А чем измеряется сила тока. Сила электрического тока, в чём измеряется, определение

Первые открытия, связанные с работой электричества, начались в VII веке до нашей эры​. Философ Древней Греции Фалес Милетский выявил, что при трении янтаря о шерсть она впоследствии способна притягивать легковесные предметы. С греческого «электричество» переводится как «янтарность». В 1820 г. Андре-Мари Ампером был установлен закон постоянного тока. В дальнейшем величину силы тока или то, в чём измеряется электрический ток, стали обозначать в амперах.

Значение термина

Понятие электрического тока можно найти в любом учебнике по физике. Электроток - это упорядоченное движение электрозаряженных частиц по направлению. Чтобы понять простому обывателю, что представляет собой электрический ток, следует воспользоваться словарём электрика. В нём термин расшифровывается как движение электронов по проводнику или ионов по электролиту.

В зависимости от движения электронов или ионов внутри проводника различают следующие виды токов:

  • постоянный;
  • переменный;
  • периодический или пульсирующий.

Основные величины измерения

Сила электрического тока - основной показатель, которым пользуются электрики в своей работе. От величины заряда, который протекает по электрической цепочке за установленный промежуток времени, зависит сила действия электрического течения. Чем большее количество электронов перетекло от одного начала источника к концу, тем больше будет перенесённый электронами заряд.

Величина, которая измеряется отношением электрического заряда, протекающего сквозь поперечное сечение частиц в проводнике, ко времени его прохождения. Заряд замеряется в кулонах, время - в секундах, а одна единица силы течения электричества определяется отношением заряда ко времени (кулона к секунде) или в амперах. Определение электрического тока (его силы) происходит путём последовательного включения двух клемм в электроцепь.

При работе электротока движение заряженных частиц совершается с помощью электрического поля и зависит от силы движения электронов. Величина, от которой зависит работа электротока, называется напряжением и определяется отношением работы тока в конкретной части цепи и заряда, проходящего по этой же части. Единица измерения вольт замеряется вольтметром, когда две клеммы прибора подключаются к цепи параллельно.

Величина электрического сопротивления имеет прямую зависимость от типа используемого проводника, его длины и поперечного сечения. Она измеряется в омах.

Мощность определяется отношением работы движения токов ко времени, когда происходила эта работа. Замеряют мощность в ваттах.

Такая физическая величина, как ёмкость, определяется отношением заряда одного проводника к разнице потенциалов между этим же проводником и соседним. Чем меньше напряжение при получении электрозаряда проводниками, тем больше их ёмкость. Измеряют её в фарадах.

Величина работы электричества на определённом промежутке цепочки находится с помощью произведения силы тока, напряжения и временного отрезка, при котором осуществлялась работа. Последняя замеряется в джоулях. Определение работы электротока происходит с помощью счётчика, который соединяет показания всех величин, а именно напряжения, силы и времени.

Техника электробезопасности

Знание правил электробезопасности поможет предупредить аварийную ситуацию и уберечь здоровье и жизнь человека. Так как электричество имеет свойство нагревать проводник, то всегда существует возможность возникновения опасной для здоровья и жизни ситуации. Для обеспечения безопасности в быту необходимо придерживаться следующих простых, но важных правил:

  1. Изоляция сети всегда должна быть исправной, чтобы избежать перегрузок или возможности возникновения коротких замыканий.
  2. Влага не должна попадать на электроприборы, провода, щитки и т. д. Также влажная среда провоцирует появление коротких замыканий.
  3. Обязательно следует делать заземление для всех электроустройств.
  4. Необходимо избегать перегрузки электропроводки, так как существует риск воспламенения проводов.

Техника безопасности при работе с электричеством предполагает использование прорезиненых перчаток, рукавиц, ковриков, разрядных устройств, приборов заземления рабочих участков, выключателей-автоматов или предохранителей с тепловой и токовой защитой.

Опытные электрики при возникновении вероятности поражения электричеством работают одной рукой, а вторая находится в кармане. Таким образом прерывается цепь «рука-рука» в случае непроизвольного прикосновения к щитку или другому заземлённому оборудованию. При воспламенении оборудования, подключённого к сети, ликвидируют огонь исключительно порошковыми или углекислотными тушителями.

Применение электрического тока

У электрического тока множество свойств, которые позволяют применять его почти во всех сферах человеческой деятельности. Способы использования электротока:

Электричество сегодня является наиболее экологически чистым видом энергии. В условиях современной экономики развитие электроэнергетики имеет планетарное значение. В будущем при возникновении сырьевого дефицита электричество займёт лидирующие позиции в качестве неисчерпаемого источника энергии.

Электрическим током (I) называется направленное движение электрических зарядов (ионов - в электролитах, электронов проводимости в металлах).
Необходимым условием для протекания электрического тока является замкнутость электрической цепи.

Электрический ток измеряется в амперах (А) .

Производными единицами измерения тока являются:
1 килоампер (кА) = 1000 А;
1 миллиампер (мА) 0,001 А;
1 микроампер (мкА) = 0,000001 А.

Человек начинает ощущать проходящий через его тело ток в 0,005 А. Ток больше 0,05 А опасен для жизни человека.

Электрическим напряжением (U) называется разность потенциалов между двумя точками электрического поля.

Единицей разности электрических потенциалов является вольт (В).
1 В = (1 Вт) : (1 А).

Производными единицами измерения напряжения являются:

1 киловольт (кВ) = 1000 В;
1 милливольт (мВ) = 0,001 В;
1 микровольт (мкВ) = 0,00000 1 В.

Сопротивлением участка электрической цепи называется величина, зависящая от материала проводника, его длины и поперечного сечения.

Электрическое сопротивление измеряется в омах (Ом).
1 Ом = (1 В) : (1 А).

Производными единицами измерения сопротивления являются:

1 килоОм (кОм) = 1000 Ом;
1 мегаОм (МОм) = 1 000 000 Ом;
1 миллиОм (мОм) = 0,001 Ом;
1 микроОм (мкОм) = 0,00000 1 Ом.

Электрическое сопротивление тела человека в зависимости от ряда условий колеблется от 2000 до 10 000 Ом.

Удельным электрическим сопротивлением (ρ) называется сопротивление проволоки длиной 1 м и сечением 1 мм2 при температуре 20 °С.

Величина, обратная удельному сопротивлению, называется удельной электрической проводимостью (γ).

Мощностью (Р) называется величина, характеризующая скорость, с которой происходит преобразование энергии, или скорость, с которой совершается работа.
Мощностью генератора называется величина, характеризующая скорость, с которой механическая или другая энергия преобразуется в генераторе в электрическую.
Мощностью потребителя называется величина, характеризующая скорость, с которой происходит преобразование электрической энергии в отдельных участках цепи в другие полезные виды энергии.

Системной единицей мощности в СИ является ватт (Вт). Он равен мощности, при которой за 1 секунду выполняется работа в 1 джоуль:

1Вт = 1Дж/1сек

Производными единицами измерения электрической мощности являются:

1 киловатт (кВт) = 1000 Вт;
1 мегаватт (МВт) = 1000 кВт = 1 000 000 Вт;
1 милливатт (мВт) = 0,001 Вт; о1i
1 лошадиная сила (л. с.) = 736 Вт = 0,736 кВт.

Единицами измерения электрической энергии являются:

1 ватт-секунда (Вт сек) = 1 Дж = (1 Н) (1 м);
1 киловатт-час (кВт ч) = 3,б 106 Вт сек.

Пример. Ток, потребляемый электродвигателем, присоединенным к сети 220 В, составлял 10 А в течение 15 минут. Определить энергию, потребленную двигателем.
Вт*сек, или, разделив эту величину на 1000 и 3600, получим энергию в киловатт-часах:

W = 1980000/(1000*3600) = 0,55кВт*ч

Таблица 1. Электрические величины и единицы

Абстрактное понятие об электрическом токе есть у каждого человека. Для электрического прибора источник питания - это нечто вроде источника воздуха для любого дышащего организма. Но на этих сравнениях понимание природы явления ограничивается, и только специалисты понимают суть глубже.

В школьной программе все проходят курс физики, в котором описаны основные понятия и законы электричества. Сухой, научный подход не вызывает интерес у детей, поэтому большинство взрослых не имеют никакого представления о том, что из себя представляет электрический ток, почему он возникает, как у него единица измерения, и как вообще что-то может двигаться сквозь неподвижные металлические провода, да еще заставлять работать электроприборы.

Простыми словами об электрическом токе

Стандартное определение из школьного учебника по физике лаконично описывает явление электрического тока. Но если говорить откровенно, то полноценно понять это можно, если изучить предмет гораздо глубже. Ведь информация изложена на другом языке - научном. Гораздо легче разобраться в природе физического явления, если описать все привычным языком, понятному любому человеку. Например, ток в металле.

Начать следует с того, что все, что мы считаем твердым и неподвижным, является таким только в нашем представлении. Кусок металла, лежащий на земле - это монолитное неподвижное тело в человеческом понимании. Для аналогии представим нашу планету в космосе, взглянув на нее с поверхности Марса. Земля кажется целостным, неподвижным телом. Если же приблизиться к ее поверхности, то станет очевидно, что это не монолитный кусок материи, а постоянное движение: вода, газы, живые существа, литосферные плиты - все это безостановочно перемещается, хотя из далекого космоса этого и не видно.

Вернемся к нашему лежащему на земле куску металла. Он неподвижен, потому что мы смотрим на него со стороны как на монолитный объект. На атомном же уровне он состоит из постоянно движущихся мельчайших элементов. Они бывают разные, но среди всех, нам интересны электроны, которые и создают в металлах электромагнитное поле, порождающее тот самый ток. Слово «ток» нужно понимать буквально, потому что когда элементы с электрическим зарядом перемещаются, то есть «текут», из одного заряженного объекта в другой - тогда и происходит «электрический ток».

Разобравшись с основными понятиями, можно вывести общее определение:

Электрический ток - это поток заряженных частиц, движущихся из тела с более высоким зарядом в тело с более низким зарядом.

Чтобы еще точнее понять суть, нужно углубиться в детали и получить ответы на несколько основных вопросов.

Видео сюжет

Ответы на главные вопросы об электрическом токе

После формулировки определения, возникает несколько логичных вопросов.

  1. Что заставляет ток «течь», то есть перемещаться?
  2. Если мельчайшие элементы металла постоянно перемещаются, то почему он не деформируется?
  3. Если что-то перетекает из одного объекта в другой, то меняется ли масса этих объектов?

Ответ на первый вопрос прост. Как вода течет с высокой точки в низкую - так и электроны будут течь из тела с высоким зарядом в тело с низким, повинуясь законам физики. А «заряд» (или же потенциал) - это количество электронов в теле, и чем их больше - тем заряд выше. Если между двумя телами с разными зарядами будет проложен контакт - электроны из более заряженного тела потекут в менее заряженное. Так возникнет ток, который закончится тогда, когда заряды двух контактирующих тел уравняются.

Чтобы понять, почему провод не меняет структуру, несмотря на то, что в нем постоянно происходит движение, нужно представить его в виде большого дома, в котором живут люди. Размер дома не будет меняться о того, сколько людей в него заходят и выходят, а также перемещаются внутри. Человек в данном случае аналог электрона в металле - он свободно перемещается и не имеет особой массы по сравнению с целым зданием.

Если электроны перемещаются из одного тела в другое - почему масса тел не меняется? Дело в том, что вес электрона настолько мал, что, даже если удалить из тела все электроны, его масса не изменится.

Что такое единица измерения силы тока

  • Сила тока.
  • Напряжение.
  • Сопротивление.

Если попытаться описать понятие силы тока простыми словами, лучше всего представить поток автомобилей, проходящих через тоннель. Автомобили - это электроны, а тоннель - провод. Чем больше автомобилей проходит в один момент времени через поперечное сечение тоннеля - тем больше сила тока, которая измеряется прибором под названием «амперметр» в Амперах (А), а в формулах обозначается буквой (I).

Напряжение - это относительная величина, выражающая разницу зарядов тел, между которыми идет ток. Если у одного объекта заряд очень высокий, а другого очень низкий, то между ними будет высокое напряжение, для измерения которого используют прибор «вольтметр» и единицы под названием Вольт (V). В формулах идентифицируется буквой (U).

Сопротивление характеризует способность проводника, условно медного провода, пропускать через себя определенное количество тока, то есть электронов. Оказывающий сопротивление проводник генерирует тепло, расходуя часть энергии проходящего через него тока, тем самым понижая его силу. Сопротивление вычисляют в Омах (Ом), а в формулах используют букву (R).

Формулы для вычисления характеристик тока

Применяя три физические величины, можно вычислять характеристики тока, используя Закона Ома. Он выражается формулой:

I=U/R

Где I - сила тока, U - напряжение на участке цепи, R - сопротивление.

Из формулы мы видим, что сила тока вычисляется путем деления величины напряжения на величину сопротивления. Отсюда мы имеем формулировку закона:

Сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению проводника.

Из данной формулы математическим путем можно вычислить другие ее составляющие.

Сопротивление:

R=U/I

Напряжение:

U=I*R

Важно отметить, что формула действительна только для конкретного участка цепи. Для полной, замкнутой цепи, а также других частных случаев есть другие законы Ома.

Видео сюжет

Влияние тока на разные материалы и живых существ

Разные химические элементы под действием тока ведут себя по-разному. Некоторые сверхпроводники не оказывают сопротивления движущимся сквозь них электронам, не вызывая никакой химической реакции. Металлы же при излишнем для них напряжении могут разрушаться, плавиться. Диэлектрики, не пропускающие ток, вообще не вступают с ним ни в какое взаимодействие и тем самым ограждают от него окружающую среду. Это явление успешно используется человеком при изоляции проводов резиной.

Для живых организмов ток неоднозначное явление. Он способен оказывать как благотворное, так и разрушительное воздействие. Люди давно используют контролируемые разряды в лечебных целях: от легких стимулирующих мозговую деятельность разрядов, до мощных ударов электричеством, способных запустить остановившееся сердце и вернуть человека к жизни. Сильный разряд способен привести к серьезным проблемам со здоровьем, ожогам, отмиранию тканей и даже мгновенной смерти. Работая с электрическими приборами, нужно соблюдать правила техники безопасности.

. Ток или силу тока определяют количеством электронов, проходящих через точку или элемент схемы в течение одной секунды. Так, например, через нить накала горящей лампы накаливания карманного фонаря ежесекундно проходит около 2 000 000 000 000 000 000 (два триллиона) электронов. Однако на практике измеряется не количество электронов, а их движение, выраженное в амперах (А).

Ампер – это единица электрического тока, которую так назвали в честь французского физика и математика А. Ампера изучавшего взаимодействие проводников с током. Экспериментально установлено, что при токе в 1А через точку или элемент схемы проходит около 6 250 000 000 000 000 000 электронов.

Помимо ампера применяют и более мелкие единицы силы тока: миллиампер (мA), равный 0,001 А, и микроампер (мкA), равный 0,000001 А или 0,001 мА. Следовательно: 1 А = 1000 мА = 1 000 000 мкА .

1. Прибор для измерения силы тока.

Как и напряжение, ток бывает постоянный и переменный . Приборы, служащие для измерения тока, называют амперметрами , миллиамперметрами и микроамперметрами . Так же, как и вольтметры, амперметры бывают стрелочными и цифровыми .

На электрических схемах приборы обозначаются кружком и буквой внутри: А (амперметр), мА (миллиамперметр) и мкА (микроамперметр). Рядом с условным обозначением амперметра указывается его буквенное обозначение «» и порядковый номер в схеме. Например. Если амперметров в схеме будет два, то около первого пишут «PА1 », а около второго «PА2 ».

Для измерения тока амперметр включается непосредственно в цепь последовательно с нагрузкой , то есть в разрыв цепи питания нагрузки. Таким образом, на время измерения амперметр становится как бы еще одним элементом электрической цепи, через который протекает ток, но при этом в схему амперметр никаких изменений не вносит. На рисунке ниже изображена схема включения миллиамперметра в цепь питания лампы накаливания.

Также надо помнить, что амперметры выпускаются на разные диапазоны (шкалы), и если при измерении использовать прибор с меньшим диапазоном по отношению к измеряемой величине, то прибор можно повредить. Например. Диапазон измерения миллиамперметра составляет 0…300 мА, значит, силу тока измеряют только в этих пределах, так как при измерении тока свыше 300 мА прибор выйдет из строя.

2. Измерение силы тока мультиметром.

Измерение силы тока мультиметром практически ни чем не отличается от измерения обыкновенным амперметром или миллиамперметром. Разница состоит лишь в том, что у обычного прибора всего один диапазон измерения, рассчитанный на определенную максимальную величину тока, тогда как у мультиметра диапазонов несколько, и перед измерением приходится определять каким из диапазон пользоваться в данный момент.

Обычные мультиметры, не профессиональные, рассчитаны на измерение постоянного тока и имеют четыре поддиапазона, что на бытовом уровне вполне достаточно. У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 2m , 20m , 200m , 10А . Например. На пределе «20m » можно измерять постоянный ток в диапазоне 0…20 мА.

Для примера измерим ток, потребляемый обычным светодиодом. Для этого соберем схему, состоящую из источника напряжения (пальчиковой батарейки) GB1 и светодиода VD1 , а в разрыв цепи включим мультиметр РА1 . Но перед включением мультиметра в схему подготовим его к проведению измерений.

Измерительные щупы вставляем в гнезда мультиметра, как показано на рисунке:

красный щуп называют плюсовым , и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA »;
черный щуп является минусовым или общим и вставляется он в гнездо, напротив которого написано «СОМ ». Относительно этого щупа производятся все измерения.

В секторе измерения постоянного тока выбираем предел «2m », диапазон измерения которого составляет 0…2 мА. Подключаем щупы мультиметра согласно схеме и затем подаем питание. Светодиод загорелся, и его потребление тока составило 1,74 мА. Вот, в принципе, и весь процесс измерения.

Однако этот вариант измерения подходит тогда, когда величина потребления тока известна. На практике же часто возникает ситуация, когда необходимо измерить ток на каком-либо участке цепи, величина которого неизвестна или известна приблизительно. В таком случае измерение начинают с самого высокого предела.

Предположим, что потребление тока светодиодом неизвестно. Тогда переключатель переводим на предел «200m », который соответствует диапазону 0…200 мА, и после этого щупы мультиметра включаем в цепь.

Затем подаем напряжение и смотрим на показания мультиметра. В данном случае показания тока составили «01,8 », что означает 1,8 мА. Однако нолик впереди указывает на то, что можно снизиться на предел «20m ».

Отключаем питание. Переводим переключатель на предел «20m ». Включаем питание и опять производим измерение. Показания составили 1,89 мА.

Часто бывает ситуация, когда при измерении тока или напряжения на индикаторе появляется единица . Единица говорит о том, что выбран низкий предел измерения и он меньше величины измеряемого параметра. В этом случае необходимо перейти на предел выше.

Также может возникнуть момент, когда измеряемый ток выше 200 мА и необходимо перейти на предел измерения «10А ». Однако здесь есть нюанс, который надо запомнить. Помимо того, что переключатель переводится на предел «10А », еще также необходимо переставить плюсовой (красный) щуп в крайнее левое гнездо, напротив которого стоит цифро-буквенное значение «10А», указывающее, что это гнездо предназначено для измерения больших токов.

И еще совет. Возьмите за правило: когда закончите все измерения на пределе «10А » сразу же переставляйте плюсовой (красный) щуп на свое штатное место . Этим Вы сбережете себе нервы, щупы и мультиметр.

Ну вот, в принципе и все, что хотел сказать об измерении тока мультиметром. Главное понимать, что при вольтметр подключается параллельно нагрузке или источнику напряжения, тогда как при измерении силы тока амперметр включается непосредственно в цепь и через него протекает ток, которым питаются элементы схемы.

Ну и в качестве закрепления прочитанного предлагаю посмотреть видеоролик, в котором на примере схем рассказывается об измерениях напряжения и силы тока мультиметром.

Сила тока измеряется в амперах и характеризует нагрузку электрических сетей. Необходимость измерения силы тока возникает для проверки, является ли нагрузка на кабель допустимой. Для монтажа электропроводок используются кабели различных сечений. Допустимыми токами для кабелей с поливинилхлоридной изоляцией, проложенных по воздуху, являются:

Сечение жилы, мм 2 Алюминиевые жилы в количестве Медные жилы в количестве
2 3 4 5 2 3 4 5
1,5 24 21 20 20
2,5 25 21 20 20 33 28 26 26
4,0 34 29 27 27 44 37 34 34
6,0 43 37 34 34 56 49 46 46

При превышении нагрузки кабельной линии допустимой, кабель будет нагреваться, а его изоляция – разрушаться. В итоге это приведет к короткому замыканию, а кабель придется менять на новый.

Поэтому после замены кабелей измеряют ток, протекающий через него при подключении всех электроприборов. Если электропроводка старая, то при подключении к ней дополнительной нагрузки тоже нужно проверить, соответствуют ли токи в ней допустимым значениям.

При максимальной нагрузке электропроводки можно проверить, соответствует ли ток через автоматические выключатели их номинальным данным. При превышении номинального тока автомата его срабатывание от перегрузки неизбежно.

Измерение силы тока требуется для определения режимов работы электроприборов. Измерение токов нагрузки электродвигателей производится не только для контроля их исправности (токи во всех фазах должны быть одинаковы), но и для определения наличия перегрузки из-за повышенного момента на валу. Для обогревателя измерение тока покажет, все ли греющие элементы у него исправны. Только измерением тока нагрузки можно выяснить, заработал ли теплый пол.

Мощность электрического тока

Мощность – это работа, совершаемая электрическим током в единицу времени. Измеряется она в Ваттах (Вт, W). Измерить мощность напрямую теоретически можно, но для этого применяются специальные приборы – ваттметры, измеряющие ток через нагрузку и напряжение на ней. Показания они выдают в Ваттах, но подключить их слишком сложно. Поэтому они применяются для измерений в заранее определенных узлах электрической сети, подключаясь к ним раз и навсегда.

Для бытового применения мощность рассчитывается после измерений потребляемого нагрузкой тока и величины напряжения на ней, которую для простоты можно принять равной 220 в.

Не всегда этот метод дает точные результаты. При наличии в нагрузке индуктивного сопротивления на активную мощность оказывает влияние коэффициент мощности. Некоторые электроприборы потребляют ток несинусоидальной формы (светодиодные и энергосберегающие лампы, компьютерная и телевизионная техника), который не все измерительные приборы, рассчитанные на измерение переменного напряжения, измеряют правильно.

Приборы для измерения силы тока

Измерить ток можно, используя такие приборы:

амперметры . Как и ваттметры, они применяются для стационарных измерений.


мультиметр – многофункциональный прибор с цифровым жидкокристаллическим дисплеем ();


тестер – прибор, измеряющий несколько величин, но, в отличие от мультиметра, имеющий стрелочный указатель;


токоизмерительные клещи – прибор, позволяющий измерять ток без разрыва электрической цепи.

Методы измерения силы тока

В отличие от измерения напряжения ток измеряется не при параллельном подключении прибора к нагрузке, а при последовательном. Это означает, что измерительный прибор нужно подключить в разрыв любого из проводов питания однофазного потребителя. При трехфазном питании то же самое нужно проделывать для каждой из фаз. В этом случае ток в нулевом проводе не измеряется, так как при симметричной нагрузке он равен нулю. Иногда требуется измерить ток в нулевом проводнике, но для группы потребителей отключения нуля для производства измерений невозможно.

Все эти причины приводят к тому, что тестеры и обычные мультиметры редко применяют для измерения силы тока. Их можно использовать только для одиночного потребителя или при измерениях на постоянном токе.

Во всех остальных случаях применяются токоизмерительные клещи или мультиметры, имеющие их в своем составе. Для измерений достаточно нажатием на клавишу разжать клещи, поместить внутрь измерительного контура проводник с измеряемым током и отпустить клавишу. Магнитопровод клещей замкнется и на дисплее (есть клещи со шкалой и стрелкой) отобразится измеряемое значение.

При использовании токоизмерительных клещей нужно внимательно следить, чтобы внутрь магнитопровода попал только проводник, в котором измеряется ток. При попадании внутрь двух проводников и более клещи будут измерять сумму токов в них, причем еще и векторную. Это означает, что поместив внутрь магнитопровода клещей двухжильный кабель с нагрузкой, мы измерим ток, равный нулю. Клещи, как и УЗО, сложат уходящий по фазному проводнику ток в сторону нагрузки и тот же ток с обратным знаком, возвращающийся обратно.

Клещи предназначены только для измерения переменного тока. На постоянном токе попытка их применения приведет к тому, что магнитопровод замкнется с непреодолимой силой. Разжать его руками не получится до тех пор, пока ток не будет отключен.

Понравилась статья? Поделиться с друзьями: