Напряженность воды. Мастер-класс «Поверхностное натяжение воды»

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

В окружающем нас мире наряду с тяготением, упругостью и трением действует еще одна сила, на которую мы обычно не обращаем внимание. Эта сила действует вдоль касательной к поверхностям всех жидкостей. Силу, которая действует вдоль поверхности жидкости перпендикулярно линии, ограничивающей эту поверхность, стремится сократить её до минимума, называют силой поверхностного натяжения . Она сравнительно мала, ее действие никогда не вызывает мощных эффектов. Тем не менее, мы не можем налить воду в стакан, вообще ничего не можем проделать с какой-либо жидкостью без того, чтобы не привести в действие силы поверхностного натяжения. К эффектам, называемым поверхностным натяжением, мы настолько привыкли, что не замечаем их. Удивительно разнообразны проявления поверхностного натяжения жидкости в природе и технике. В природе и в нашей жизни они играют немаловажную роль. Без них мы не могли бы писать гелиевыми ручками, картриджив принтерах сразу же ставили бы большую кляксу, опорожнив весь свой резервуар. Нельзя было бы намылить руки - пена не образовалась бы. Слабый дождик промочил бы нас насквозь, а радугу нельзя было бы видеть ни при какой погоде. Поверхностное натяжение собирает воду в капли и благодаря поверхностному натяжению можно выдуть мыльный пузырь. Используя правило «Вовремя удивляться» бельгийского профессора Плато для исследователей, рассмотрим в работе необычные опыты.

Цель работы: экспериментально проверить проявления поверхностного натяжения жидкости, определить коэффициент поверхностного натяжения жидкостей методом отрыва капель

    Изучить учебную, научно-популярную литературу, использовать материалы в сети «Интернет» по теме «Поверхностное натяжение»;

    проделать опыты, доказывающие, что собственная форма жидкости - шар;

    провести эксперименты с уменьшением и увеличением поверхностного натяжения;

    сконструировать и собрать экспериментальную установку, с помощью которой определить коэффициент поверхностного натяжения некоторых жидкостей методом отрыва капель.

    обработать полученные данные и сделать вывод.

Объект исследования: жидкости.

Основная часть. Поверхностное натяжение

Рис 1. Г. Галилей

Ногочисленные наблюдения и опыты показывают, что жидкость может принимать такую форму, при которой ее свободная поверхность имеет наименьшую площадь. В своем стремлении сократиться поверхностная пленка придавала бы жидкости сферическую форму, если бы не притяжение к Земле. Чем меньше капля, тем большую роль играют силы поверхностного натяжения. Поэтому маленькие капельки росы на листьях деревьев, на траве близки по форме к шару, при свободном падении дождевые капли почти строго шарообразны. Стремление жидкости сокращаться до возможного минимума, можно наблюдать на многих явлениях, которые кажутся удивительными. Еще Галилей задумывался над вопросом: почему капли росы, которые он видел по утрам на листьях капусты, принимают шарообразную форму? Утверждение, что жидкость не имеет своей формы, оказывается не совсем точным. Собственная форма жидкости - шар, как наиболее ёмкая форма. Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, также как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. 1

Рис 2. Пример ближнего порядка молекул жидкости и дальнего порядка молекул кристаллического вещества: 1 - вода; 2 - лед

А как можно объяснить самопроизвольное сокращение поверхности жидкости? Молекулы на поверхности и в глубине жидкости находятся в разных условиях. На каждую молекулу внутри жидкости действуют силы притяжения со стороны соседних молекул, окружающих ее со всех сторон. Результирующая этих сил равна нулю. Над поверхностью жидкости находится пар, плотность которого во много раз меньше плотности жидкости, и взаимодействием молекул пара с молекулами жидкости можно пренебречь. Молекулы, которые находятся на поверхности жидкости, притягиваются только молекулами, находящимися внутри жидкости. Под действием этих сил молекулы поверхностного слоя втягиваются внутрь, число молекул на поверхности уменьшается, площадь поверхности сокращается. Но не все молекулы могут с поверхности уйти внутрь жидкости, этому препятствуют силы отталкивания, возникающие при уменьшении расстояний между молекулами. При определенных расстояниях между молекулами, втягиваемыми внутрь, и молекулами, находящимися под поверхностью, силы взаимодействия становятся равными нулю, процесс сокращения поверхности прекращается. На поверхности остается такое число молекул, при котором ее площадь оказывается минимальной для данного объема жидкости. Так как жидкость текуча, она принимает такую форму, при которой число молекул на поверхности минимально, а минимальную поверхность при данном объеме имеет шар, то есть капля жидкости принимает форму, близкую шаровой.Проще всего уловить характер сил поверхностного натяжения, наблюдая образование капли. Всмотритесь внимательно, как постепенно растет капля, образуется сужение - шейка, - и капля отрывается. Не нужно много фантазии, чтобы представить себе, что вода как бы заключена в эластичный мешочек, и этот мешочек разрывается, когда вес превышает его прочность. В действительности, конечно, ничего кроме воды, в капле нет, но сам поверхностный слой воды ведёт себя, как растянутая эластичная пленка. Такое же впечатление производит пленка мыльного пузыря.

Опыт №1

Тремление жидкости к минимуму потенциальной энергии можно наблюдать с помощью мыльных пузырей. Мыльная пленка представляет собой двойной поверхностный слой. Если выдуть мыльный пузырь, а потом прекратить надувание, то он станет уменьшаться в объёме, выжимая из себя струю воздуха.

Поверхностное натяжение - явление молекулярного давления на жидкость, вызываемое притяжением молекул поверхностного слоя к молекулам внутри жидкости 5

Опыт Плато (1849г.)

Рис. 4. Ж.Плато

Оводом, побудившим бельгийского профессора к опытам, был случай. Нечаянно он налил в смесь спирта и воды небольшое количество масла, и оно приняло форму шара. Размышляя над этим фактом, Плато наметил ряд опытов, которые впоследствии блестяще были выполненными его друзьями и учениками. В своем дневнике он написал для исследователей правило: «Вовремя удивляться». Я решила исследовать опыт Плато, но в другом варианте: использовать в опыте подсолнечное масло и подкрашенную марганцовую воду.

Опыт, доказывающий, что однородная жидкость принимает форму с минимальной свободной поверхностью

Вариант опыта Плато №2

1) В мензурку налили подсолнечное масло.

2) Глазной пипеткой капнули в подсолнечное масло каплю подкрашенной марганцовой воды диаметром приблизительно 5мм.

) Наблюдали шарики воды разного размера, медленно падающие на дно и принимающие овальную приплюснутую форму (Фото 2).

5) Наблюдали, как капля принимает правильную форму шара (Фото 2).

Вывод : Жидкость, притягивая молекулы поверхностного слоя, сжимает саму себя. Овальная приплюснутая форма объясняется тем, что вес капли, которая не смешивается с маслом, больше выталкивающей силы. Правильная форма шара объясняется тем, что капля плавает внутри масла: вес капли уравновешивается выталкивающей силой.

При свободном падении, в состоянии невесомости капли дождя практически имеют форму шара. В космическом корабле шарообразную форму принимает и достаточно большая масса жидкости.

Коэффициент поверхностного натяжения

В отсутствии внешней силы вдоль поверхности жидкости действует сила поверхностного натяжения, которая сокращает до минимума площадь поверхности пленки. Сила поверхностного натяжения - сила, направленная по касательной к поверхности жидкости, перпендикулярно участку контура, ограничивающего поверхность, в сторону ее сокращения.

Ơ - коэффициент поверхностного натяжения - это отношение модуля F силы поверхностного натяжения, действующей на границу поверхностного слоя ℓ, к этой длине есть величина постоянная, не зависящая от длины ℓ. Коэффициент поверхностного натяжения зависит от природы граничащих сред и от температуры. Его выражают в ньютонах на метр (Н / м).

Опыты с уменьшением и увеличением

Фото 3

оверхностного натяжения

Опыт №3

    Прикоснулись к центру поверхности воды кусочком мыла.

    Кусочки пенопласта начинают двигаться от центра к краям сосуда (Фото 3).

    Капали в центр сосуда бензином, спиртом, моющим средством «Fairy».

Вывод: Поверхностное натяжение данных веществ меньше, чем у воды.

Эти вещества используются для удаления грязи, жирных пятен, сажи, т.е. не растворимых в воде веществ.Из-за достаточно высокого поверхностного натяжения вода сама по себе не обладает очень хорошим чистящим действием. Например, вступая в контакт с пятном, молекулы воды притягиваются друг к другу больше, чем к частицам нерастворимой грязи.Мыло и синтетические моющие средства (СМС) содержат вещества, уменьшающие поверхностное натяжение воды. Первое мыло, самое простое моющее средство, было получено на Ближнем Востоке более 5000 лет назад. Поначалу оно использовалось, главным образом, для стирки и обработки язв и ран. И только в 1 веке н.э. человек стал мыться с мылом.

В начале 1-го века мыло появилось на свет.

От грязи спасло человека и стал он чистым с юных лет.

Я говорю вам про мыло, что вскоре породило: шампунь, гель, порошок.

Стал чистым мир, как хорошо!

Рис 5. Ф. Гюнтер

Моющими средствами называются натуральные и синтетические вещества с очищающим действием, в особенности мыло и стиральные порошки, применяемые в быту, промышленности и сфере обслуживания. Мыло получают в результате химического взаимодействия жира и щелочи. Скорее всего, оно было открыто по чистой случайности, когда над костром жарили мясо, и жир стекал на золу, обладающую щелочными свойствами. Производство мыла имеет давнюю историю, а вот первое синтетическое моющее средство (СМС) появилось в 1916г., его изобрел немецкий химик Фриц Гюнтер для промышленных целей. Бытовые СМС, более или менее безвредные для рук, стали выпускаться 1933г. С тех пор разработан целый ряд синтетических моющих средств (СМС) узкого назначения, а их производство стало важной отраслью химической промышленности.

Именно из-за поверхностного натяжения вода сама по себе не обладает достаточным чистящим действием. Вступая в контакт с пятном, молекулы воды притягиваются друг к другу, вместо того чтобы захватывать частицы грязи, другими словами они не смачивают грязь.

Мыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения. Эти вещества называются поверхностно-активными (ПАВ), поскольку действуют на поверхности жидкости.

Сейчас производство СМС стало важной отраслью химической промышленности. Эти вещества называют поверхностно-активным веществом (ПАВ), поскольку действуют на поверхности жидкости. Молекулы ПАВ можно представить в виде головастиков. Головами они «цепляются» за воду, а «хвостами» за жир. Когда ПАВ смешивают с водой, их молекулы на поверхности обращены «головами» вниз, а «хвостами» наружу. Раздробив таким образом поверхность воды, эти молекулы значительно уменьшают эффект поверхностного натяжения, тем самым помогая воде проникнуть в ткань. Этими же «хвостиками» молекулы ПАВ (Рис 6) захватывают попадающиеся им молекулы жира. 2

Опыт №4

1.Налили в блюдце молоко так, чтобы оно закрыло дно (Фото 4)

2. Капнули на поверхность молока 2 капля зеленки

3. Наблюдали, как зеленка «увлекается» от центра к краям. Две капли зеленки покрывают большую часть поверхности молока! (Фото 5)

Вывод: поверхностное натяжение зеленки, намного меньше, чем молока.

4. На поверхность зеленки капнули жидкость для мытья посуды «Fairy», мы увидели, как эта жидкость растеклась по всей поверхности.(Фото 6)

Вывод: поверхностное натяжение моющего средства меньше, чем зеленки.

Опыт№5

    В широкий стеклянный сосуд налили воду.

    На поверхность бросили кусочки пенопласта.

    Прикоснулись к центру поверхности воды кусочком сахара.

    Усочки пенопласта начинают двигаться от краев сосуда к центру (Фото 7).

Вывод: поверхностное натяжение водного раствора сахара больше, чем чистой воды.

Опыт№6

Удаление с поверхности ткани жирового пятна

Смочили бензином ватку и этой ваткой смочили края пятна (а не само пятно). Бензин уменьшает поверхностное натяжение, поэтому жир собирается к центру пятна и оттуда его можно удалить, этой же ваткой если же смачивать, само пятно, то оно может увеличиться в размерах вследствие уменьшения поверхностного натяжения.

Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы.

Краткая теория методаотрыва капель

Малый объем жидкости сам по себе принимает форму, близкую к шару, так как благодаря малой массе жидкости мала и сила тяжести, действующая на нее. Этим объясняется шарообразная форма небольших капель жидкости. На рис.1 приведены фотографии, на которых показаны различные стадии процесса образования и отрыва капли. Фотография получена с помощью скоростной киносъемки, капля растет медленно, можно считать, что в каждый момент времени она находится в равновесии. Поверхностное натяжение вызывает сокращение поверхности капли, оно стремится придать капле сферическую форму. Сила тяжести располагает центр тяжести капли как можно ниже. В результате капля оказывается вытянутой (рис.7а).

Рис. 7. а б в г

Процесс образования и отрыва капель

Чем больше капля, тем большую роль играет потенциальная энергия силы тяжести. Основная масса по мере роста капли собирается внизу и у капли образуется шейка (рис.7б). Сила поверхностного натяжения направлена вертикально по касательной к шейке и она уравновешивает силу тяжести, действующую на каплю. Теперь достаточно капле совсем немного увеличиться и силы поверхностного натяжения уже не уравновешивают силу тяжести. Шейка капли быстро сужается (рис.7в) и в результате капля отрывается (рис.7г).

Метод измерения коэффициента поверхностного натяжения некоторых жидкостей основывается на взвешивании капель. В случае медленного вытекания жидкости из малого отверстия размер образующихся капель зависит от плотности жидкости, коэффициента поверхностного натяжения, размера и формы отверстия, а также от скорости истечения. При медленном вытекании смачивающей жидкости из вертикальной цилиндрической трубки образующаяся капля имеет форму, показанную на рисунке 8. Радиус r шейки капли связан с наружным радиусом трубки R соотношением r = kR (1)

где k - коэффициент, зависящий от размеров трубки и скорости вытекания.

Момент отрыва вес капли должен быть равен равнодействующей сил поверхностного натяжения, действующих по длине, равной протяженности контура шейки в самой ее узкой части. Таким образом, можно записать

Mg = 2πrơ (2)

Подставляя величину радиуса шейки r из равенства (1) и решая его, получим

Ơ =mg/2πkR (3)

Для определения массы капли, некоторое число n капель взвешивают в стакане известного веса. Если масса стаканчика без капель и с каплями будет соответственно М 0 и М, то масса одной капли

Подставляя последнее выражение в формулу (3) и вводя вместо радиуса трубки ее диаметр d, получим расчетную формулу

ơ = ((M-M0)g)/πkdn 3 (4)

Исследовательская работа «Определение коэффициента поверхностного натяжения некоторых жидкостей методом отрыва капель»

Цель исследования : определить коэффициент поверхностного натяжения жидкости методом отрыва капель некоторых жидкостей. Приборы : установка для измерения коэффициента поверхностного натяжения, весы, разновес, стаканчик, штангенциркуль, секундомер. Материалы : моющие средства: «Fairy», «Aos», молоко, спирт, бензин, растворы порошков: «Миф», «Persil», шампуни «Fruttis» , «Pantene », «Schauma» и «Fruttis» , гели для душа «Sensen », «Монпансье» и «Discover ».

Описание прибора .

Для определения коэффициента поверхностного натяжения собрали установку, состоящую из штатива, на котором установили бюретку с исследуемой жидкостью. На конце бюретки укрепили наконечник-трубку, на конце которой образуется капля. Взвешивание капель производили в специальном стаканчике.

Ход исследования

    С помощью штангенциркуля измерили диаметр наконечника-трубки три раза и вычислили среднее значение d.

    Взвесили на весах чистый сухой стаканчик (М 0).

    С помощью краника бюретки добились скорости вытекания капель

15 капель в минуту.

    Отлили из бюретки в стаканчик 60 капель жидкости, считая точно количество отлитых капель.

    Взвесили стаканчик с жидкостью. (М)

    Подставили полученные значения в формулу ơ = ((M-M0)g)/πkdn

    Вычислили коэффициент поверхностного натяжения.

    Провели опыт три раза

    Вычислили среднее значение коэффициента поверхностного натяжения.

Коэффициент поверхностного натяжения в системе СИ измеряется в Н/м.

Таблица №1

Результаты определения коэффициента поверхностного натяжения (Н/м)

Жидкость

Коэффициент поверхностного натяжения

Измеренное

Табличное

Спирт этиловый

Молоко (2,5)

Молоко (коровье домашнее)

Раствор порошка «Миф»

Раствор порошка «Persil»

Моющее средство «Fairy»

Моющее средство «Aos»

Вывод: Из исследованных кухонных моющих средств, при всех остальных одинаковых параметрах, влияющих на качество «отмывания», лучше использовать средство «Fairy ». Из исследованных стиральных порошков «Миф », т.к. именно их растворы обладают наименьшим поверхностным натяжением. Следовательно, первое средство («Fairy ») лучше помогает смывать нерастворимые в воде жиры с посуды, являясь эмульгатором - средством, облегчающим получение эмульсий (взвесей мельчайших частиц жидкого вещества в воде). Второе («Миф ») лучше отстирывает бельё, проникая в поры между волокнами тканей. Заметим, что при использовании кухонных моющих средств, мы заставляем вещество (в частности жир) хотя бы на некоторое время растворится в воде, т.к. происходит «дробление» его на мельчайшие частицы. За это время рекомендуется смыть нанесенное моющее средство струей чистой воды, а не ополаскивать посуду через какое-то время в ёмкости. Кроме того исследовали поверхностное натяжение шампуней и гелей для душа. Из-за достаточно высокой вязкости этих жидкостей сложно точно определить коэффициент поверхностного натяжения их, но зато можно сравнить. Были исследованы (методом отрыва капель) шампуни «Pantene », «Schauma» и «Fruttis» , а также гели для душа «Sensen », «Монпансье» и «Discover ».

Вывод:

    Поверхностное натяжение уменьшается в шампунях на ряду «Fruttis» - «Schauma» - «Pantene», в гелях - в ряду «Монпансье» - «Discover» - «Senses».

    Поверхностное натяжение шампуней меньше поверхностного натяжения гелей (Например «Pantene » < «Senses » на 65 мН/м), что оправдывает их назначение: шампуни - для мытья волос, гели - для мытья тела.

    При всех остальных одинаковых характеристиках, влияющих на качество мытья, из исследованных шампуней лучше использовать «Pantene» (Рис. 9), из исследованных гелей для душа - «Senses»(Рис.10).

Метод отрыва капель, не будучи очень точным, однако, используется в медицинской практике. Этим методом определяют в диагностических целях поверхностное натяжение спинномозговой жидкости, желчи и т.д.

Заключение

1. Получены экспериментальные подтверждения теоретических выводов, доказывающие, что однородная жидкость принимает форму с минимальной свободной поверхностью

2. Проведены эксперименты с уменьшением и увеличением поверхностного натяжения, результаты которых доказали, чтомыло и синтетические моющие средства содержат вещества, повышающие смачивающие свойства воды за счет уменьшения силы поверхностного натяжения.

3. Для определения коэффициента поверхностного натяжения жидкостей

а) изучена краткая теория метода отрыва капель;

б) сконструирована и собрана экспериментальная установка;

в) вычислены средние значения коэффициента поверхностного натяжения различных жидкостей, сделаны выводы.

4. Результаты экспериментов и исследования представлены в виде таблицы и фотографий.

Работа над проектом позволила мне приобрести более широкие знания по разделу физики «Поверхностное натяжение».

Мне хочется закончить свой проект словами великого ученого физика

А. Эйнштейна :

«Мне достаточно испытать ощущение вечной тайны жизни, осознавать и интуитивно постигать чудесную структуру всего сущего и активно бороться, чтобы схватить пусть даже самую малую крупинку разума, который проявляется в Природе»

Список использованных источников и литературы

    http://www.physics.ru/

    http://greenfuture.ru/

    http://www.agym.spbu.ru/

    Буховцев Б.Б., Климонтович Ю. Л., Мякишев Г.Я., Физика, учебник для 9 класса средней школы - 4-е издание - М.: Просвещение, 1988 г. - 271 с.

    Касьянов В.А., Физика, 10 класс, учебник для общеобразовательных учебных заведений, М.: Дрофа, 2001г. - 410 с.

    Пинский А.А. Физика: учебник. Пособие для 10 классов с углубленным изучением физики. М.: Просвещение, 1993г. - 416 с.

    Юфанова И.Л. Занимательные вечера по физике в средней школе: книга для учителя. - М.: Просвещение, 1990г. -215с

    Чуянов В.Я., Энциклопедический словарь юного физика, М.: Педагогика, 1984г. - 350 с.

1 1 http://www.physics.ru/

2 http://greenfuture.ru

Коэффициент поверхностного натяжения жидкости - это величина, которая достаточно точно характеризует способность жидкости к сокращению и которая измеряется силой поверхностного натяжения, оказывающая воздействие на единицу длины линии, расположенной на поверхности жидкости. В том случае, если размер длины границы поверхности жидкости будет обозначен как l, а сила поверхностного натяжения плёнки, которая действует на данной границе, - F, таким образом, значение коэффициента поверхностного натяжения составит:

Наименование коэффициента поверхностного натяжения выражается в Н/м. Чем более высокой будет температура, тем меньшим будет значение σ для чистых жидкостей.

Следствием асимметричности сил молекулярного взаимодействия переходного слоя с молекулами, которые их окружают, является представление о существовании нормальных и тангенциальных сил по отношению к поверхности раздела фаз. Эти силы оказывают значительное воздействие на молекулы переходного слоя. Именно они являются силами молекулярного давления и поверхностного натяжения между фазами.

Зависимость коэффициента σ от наличия разных примесей

Коэффициент поверхностного натяжения напрямую связан с силами молекулярного взаимодействия и может принимать самые разнообразные значения для различных жидкостей. У жидкостей, которые очень хорошо испаряются (спирт, бензин, эфир), показатель поверхностного натяжения не такой большой, как у жидкостей, не являющихся летучими. Вначале надеваем сетку на ареометр, после чего опускаем в его в воду. Благодаря плотной сетке, ареометр будет удерживаться на определённой глубине. Далее следует капнуть немного эфира на сетку, после чего ареометр немедленно поднимется из воды.

Коэффициент связан с тем, сколько примесей находится в воде. На поверхность воды кладётся маленькая щепочка от спички. После этого в воду спускается кусок мыла. Через определённый период времени можно будет наблюдать движение щепочки к краю сосуда от мыла. В результате этого можно сделать вывод: коэффициент поверхностного натяжения может быть уменьшен с помощью мыла. Если добавить вещества, отличающиеся биологической активностью (пасту, мыло, то будет снижено. Тогда, если нужно получить пузыри, зачем же люди добавляют мыло?

Многие из нас полагают, что благодаря мылу показатель σ увеличивается. В действительности, оно как раз уменьшает показатель поверхностного натяжения приблизительно до одной трети до значения σ чистой воды. Следует отметить, что при растяжении мыльной плёнки происходит уменьшение мыла на поверхности, при этом поверхностное натяжение увеличивается. Следовательно, под воздействием мыла усиливаются слабые участки пузыря и не растягиваются дальше. Кроме того, благодаря мылу вода не испаряется, а значит, срок "жизни" пузыря увеличивается.

Теперь давайте поставим такой опыт: поместим сахарный леденец в воду. Это приведёт к тому, что щепочка будет двигаться к леденцу. Вывод однозначен: под воздействием сахара показатель поверхностного натяжения увеличивается.

Как определить коэффициент σ посредством капилляров?

Для осуществления этого простейшего в своем роде опыта нужно иметь несколько сосудов с водой и капилляры.

Капилляр требуется опустить в сосуд с водой, а затем измерить высоту подъёма жидкости. Далее другой капилляр помещается в мыльную воду, после чего измеряется высота подъёма жидкости. Коэффициент σ может быть найден из соответствующей формулы:

На этом уроке пойдет речь о жидкостях и их свойствах. С точки зрения современной физики, жидкости являются наиболее сложным предметом исследований, потому что по сравнению с газами уже нельзя говорить о пренебрежимо малой энергии взаимодействия между молекулами, а по сравнению с твердыми телами нельзя говорить об упорядоченном расположении молекул жидкости (в жидкости отсутствует дальний порядок). Это приводит к тому, что жидкости обладают рядом интереснейших свойств и их проявлений. Об одном таком свойстве и пойдет речь на этом уроке.

Для начала, обсудим особые свойства, которыми обладают молекулы приповерхностного слоя жидкости по сравнению с молекулами, находящимися в объеме.

Рис. 1. Отличие молекул приповерхностного слоя от молекул, находящихся в объеме жидкости

Рассмотрим две молекулы А и Б. Молекула А находится внутри жидкости, молекула Б - на ее поверхности (Рис. 1). Молекула А окружена другими молекулами жидкости равномерно, поэтому силы, действующие на молекулу А со стороны молекул, попадающих в сферу межмолекулярного взаимодействия, скомпенсированы, или их равнодействующая равна нулю.

Что же происходит с молекулой Б, которая находится у поверхности жидкости? Напомним, что концентрация молекул газа, который находится над жидкостью, значительно меньше, чем концентрация молекул жидкости. Молекула Б с одной стороны окружена молекулами жидкости, а с другой стороны - сильно разреженными молекулами газа. Поскольку со стороны жидкости на нее действует гораздо больше молекул, то равнодействующая всех межмолекулярных сил будет направлена внутрь жидкости.

Таким образом, для того чтобы молекула из глубины жидкости попала в поверхностный слой, нужно совершить работу против не скомпенсированных межмолекулярных сил.

Вспомним, что работа - это изменение потенциальной энергии, взятое со знаком минус.

Значит, молекулы приповерхностного слоя, по сравнению с молекулами внутри жидкости, обладают избыточной потенциальной энергией.

Эта избыточная энергия является составляющей внутренней энергии жидкости и называется поверхностной энергией . Обозначается она, как , и измеряется, как и любая другая энергия, в джоулях.

Очевидно, что чем больше площадь поверхности жидкости, тем больше таких молекул, которые обладают избыточной потенциальной энергией, а значит тем больше поверхностная энергия. Этот факт можно записать в виде следующего соотношения:

,

где - площадь поверхности, а - коэффициент пропорциональности, который мы назовем коэффициентом поверхностного натяжения , этот коэффициент характеризует ту, или иную жидкость. Запишем строгое определение этой величины.

Поверхностное натяжение жидкости (коэффициент поверхностного натяжения жидкости) - это физическая величина, которая характеризует данную жидкость и равна отношению поверхностной энергии к площади поверхности жидкости

Измеряется коэффициент поверхностного натяжения в ньютонах, деленных на метр.

Обсудим, от чего зависит коэффициент поверхностного натяжения жидкости. Для начала, вспомним, что коэффициент поверхностного натяжения характеризует удельную энергию взаимодействия молекул, а значит факторы, изменяющие эту энергию, изменят и коэффициент поверхностного натяжения жидкости.

Итак, коэффициент поверхностного натяжения зависит от:

1. Природы жидкости (у «летучих» жидкостей, таких как эфир, спирт и бензин, поверхностное натяжение меньше, чем у «нелетучих» - воды, ртути и жидких металлов).

2. Температуры (чем выше температура, тем меньше поверхностное натяжение).

3. Наличие поверхностно активных веществ, уменьшающих поверхностное натяжение (ПАВ), например мыла или стирального порошка.

4. Свойства газа, граничащего с жидкостью.

Отметим, что коэффициент поверхностного натяжения не зависит от площади поверхности, так как для одной отдельно взятой приповерхностной молекулы абсолютно неважно, сколько таких же молекул вокруг. Обратите внимание на таблицу, в которой приведены коэффициенты поверхностного натяжения различных веществ, при температуре :

Таблица 1. Коэффициенты поверхностного натяжения жидкостей на границе с воздухом, при

Итак, молекулы приповерхностного слоя обладают избыточной потенциальной энергией по сравнению с молекулами в объеме жидкости. В курсе механики было показано, что любая система стремится к минимуму потенциальной энергии. Например, тело, брошенное с некоторой высоты, будет стремиться упасть вниз. Кроме того, вы чувствуете себя намного комфортнее лёжа, поскольку в этом случае максимально низко расположен центр масс вашего тела. К чему приводит стремление уменьшить свою потенциальную энергию в случае жидкости? Поскольку поверхностная энергия зависит от площади поверхности, значит, любой жидкости энергетически невыгодно иметь большую площадь поверхности. Иными словами, в свободном состоянии жидкость будет стремиться сделать свою поверхность минимальной.

В этом легко убедиться, экспериментируя с мыльной пленкой. Если окунуть в мыльный раствор некий проволочный каркас, то на нем образуется мыльная пленка, при чем пленка приобретет такую форму, чтобы площадь ее поверхности была минимальной (Рис. 2).

Рис. 2. Фигуры из мыльного раствора

Убедиться в существовании сил поверхностного натяжения можно при помощи простого эксперимента. Если к проволочному кольцу в двух местах привязана нить, причем так, чтобы длина нити была несколько больше длины хорды, соединяющей точки крепления нити, и обмакнуть проволочное кольцо в мыльный раствор (Рис. 3а), мыльная пленка затянет всю поверхность кольца и нить будет лежать на мыльной пленке. Если теперь порвать пленку с одной стороны нити, мыльная пленка, оставшаяся с другой стороны нити, сократится и натянет нить (Рис. 3б).

Рис. 3. Эксперимент по обнаружению сил поверхностного натяжения

Почему же так произошло? Дело в том, что оставшийся сверху мыльный раствор, то есть жидкость, стремится сократить площадь своей поверхности. Таким образом, нить вытягивается вверх.

Итак, в существовании силы поверхностного натяжения мы убедились. Теперь научимся ее рассчитывать. Для этого проведем мысленный эксперимент. Опустим в мыльный раствор проволочную рамку, одна из сторон которой подвижна (Рис. 4). Будем растягивать мыльную пленку, действуя на подвижную сторону рамки силой . Таким образом, на перекладину действуют три силы - внешняя сила и две силы поверхностного натяжения , действующие вдоль каждой поверхности пленки. Воспользовавшись вторым законом Ньютона, можем записать, что

Рис. 4. Вычисление силы поверхностного натяжения

Если под действием внешней силы перекладина переместится на расстояние , то эта внешняя сила совершит работу

Естественно, что за счет совершения этой работы площадь поверхности пленки увеличится, а значит, увеличится и поверхностная энергия, которую мы можем определить через коэффициент поверхностного натяжения:

Изменение площади, в свою очередь можно определить следующим образом:

где - длина подвижной части проволочной рамки. Учитывая это, можно записать, что работа внешней силы равна

Приравнивая правые части в (*) и (**), получим выражение для силы поверхностного натяжения:

Таким образом, коэффициент поверхностного натяжения численно равен силе поверхностного натяжения, которая действует на единицу длины линии, ограничивающей поверхность

Итак, мы еще раз убедились в том, что жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной. Можно показать, что при заданном объеме площадь поверхности будет минимальной у шара. Таким образом, если на жидкость не действуют другие силы или их действие мало, жидкость будет стремиться принимать сферическую форму. Так, например, будет вести себя вода в невесомости (Рис. 5) или мыльные пузыри (Рис. 6).

Рис. 5. Вода в невесомости

Рис. 6. Мыльные пузыри

Наличием сил поверхностного натяжения также можно объяснить то, почему металлическая иголка «лежит» на поверхности воды (Рис. 7). Иголка, которую аккуратно положили на поверхность, деформирует ее, увеличивая тем самым площадь этой поверхности. Таким образом, возникает сила поверхностного натяжения, которая стремится уменьшить подобное изменение площади. Равнодействующая сил поверхностного натяжения будет направлена вверх, и она скомпенсирует силу тяжести.


Рис. 7. Иголка на поверхности воды

Таким же образом можно объяснить принцип действия пипетки. Капелька, на которую действует сила тяжести, вытягивается вниз, тем самым увеличивая площадь своей поверхности. Естественно, возникают силы поверхностного натяжения, равнодействующая которых противоположна направлению силы тяжести, и которые не дают капельке растягиваться (Рис. 8). Когда вы нажимаете на резиновый колпачок пипетки, вы тем самым создаете дополнительное давление, которое помогает силе тяжести, и в результате, капля падает вниз.

Рис. 8. Принцип работы пипетки

Приведем еще один пример из повседневной жизни. Если опустить кисточку для рисования в стакан с водой, то ее волоски распушатся. Если теперь вынуть эту кисточку из воды, то вы заметите, что все волоски прилипли друг к другу. Это связано с тем, что площадь поверхности воды, налипшей на кисточку, в таком случае будет минимальной.

И еще один пример. Если вы захотите построить замок из сухого песка, это у вас вряд ли получится, поскольку песок будет рассыпаться под действием силы тяжести. Однако если вы намочите песок, то он будет сохранять свою форму благодаря силам поверхностного натяжения воды между песчинками.

Наконец, отметим, что теория поверхностного натяжения помогает найти красивые и простые аналогии при решении более сложных физических задач. Например, когда нужно построить лёгкую и в то же время прочную конструкцию, на помощь приходит физика того, что происходит в мыльных пузырях. А построить первую адекватную модель атомного ядра удалось, уподобив это атомное ядро капле заряженной жидкости.

Список литературы

  1. Г. Я. Мякишев, Б. Б. Буховцев, Н. Н. Сотский. «Физика 10». - М.: Просвещение, 2008.
  2. Я. Е. Гегузин «Пузыри», Библиотека Квант. - М.: Наука, 1985.
  3. Б. М. Яворский, А. А. Пинский «Основы физики» т. 1.
  4. Г. С. Ландсберг «Элементарный учебник физики» т. 1.
  1. Nkj.ru ().
  2. Youtube.com ().
  3. Youtube.com ().
  4. Youtube.com ().

Домашнее задание

  1. Решив задачи к данному уроку, вы сможете подготовиться к вопросам 7,8,9 ГИА и вопросам А8, А9, A10 ЕГЭ.
  2. Гельфгат И.М., Ненашев И.Ю. «Физика. Сборник задач 10 класс» 5.34, 5.43, 5.44, 5.47 ()
  3. Опираясь на задачу 5.47, определите коэффициент поверхностного натяжения воды и мыльного раствора.

Список вопросов-ответов

Вопрос: Почему поверхностное натяжение меняется с изменением температуры?

Ответ: При увеличении температуры, молекулы жидкости начинают двигаться быстрее, и следовательно, молекулы легче преодолевают потенциальные силы притяжения. Что и приводит к уменьшению сил поверхностного натяжения, являющихся потенциальными силами, которыми связываются молекулы приповерхностного слоя жидкости.

Вопрос: Зависит ли коэффициент поверхностного натяжения от плотности жидкости?

Ответ: Да, зависит, поскольку от плотности жидкости зависит энергия молекул приповерхностного слоя жидкости.

Вопрос: Какие существуют способы определения коэффициента поверхностного натяжения жидкости?

Ответ: В школьном курсе изучаютдва способа определениякоэффициента поверхностного натяжения жидкости. Первый - это метод отрыва проволочки, его принцип описан в задаче 5.44 из домашнего задания, второй - метод счета капель, описанный в задаче 5.47.

Вопрос: Почему через некоторое время мыльные пузыри разрушаются?

Ответ: Дело в том, что через некоторое время, под действием силы тяжести пузырь становится толще внизу, чем вверху, и затем под влиянием испарения разрушается в какой-либо точке. Это приводит к тому, что весь пузырь, подобно воздушному шарику, схлопывается под действием не скомпенсированных сил поверхностного натяжения.

Основная часть.

Для понимания основных свойств и закономерностей жидкого состояния вещества необходимо рассмотреть следующие аспекты:

Строение жидкости. Движение молекул жидкости .

Жидкость – это нечто такое, что может течь.

В расположении частиц жидкости наблюдается так называемый ближний порядок. Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным.

Однако по мере удаления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным, и довольно быстро порядок в расположении частиц совсем исчезает.

Молекулы жидкости движутся гораздо более свободно, чем молекулы твердого тела, хотя и не так свободно, как молекулы газа.

Каждая молекула жидкости в течение некоторого времени движется то туда, то сюда, не удаляясь, однако от своих соседей. Но время от времени молекула жидкости вырывается из своего окружения и переходит в другое место, попадая в новое окружение, где опять в течение некоторого времени совершает движения, подобные колебанию. Значительные заслуги в разработке ряда проблем теории жидкого состояния принадлежит советскому ученому Я. И. Френкелю.

Cогласно Френкелю, тепловое движение в жидкостях имеет следующий характер. Каждая молекула в течение некоторого времени колеблется около определенного положения равновесия. Время от времени молекула меняет место равновесия, скачком перемещаясь на новое положение, отстоящего от предыдущего на расстояние порядка размеров самих молекул. То есть, молекулы лишь медленно перемещаются внутри жидкости, пребывая часть времени около определенных мест.Таким образом, движение молекул жидкости представляет собой нечто вроде смеси движений в твердом теле и в газе: колебательное движение на одном месте сменяется свободным переходом из одного места в другое.

Давление в жидкости

Повседневный опыт учит нас, что жидкости действуют с известными силами на поверхность твердых тел, соприкасающихся с ними. Эти силы называются силами давления жидкости.



Прикрывая пальцем отверстие открытого водопроводного крана, мы ощущаем силу давления жидкости на палец. Боль в ушах, которую испытывает пловец, нырнувший на большую глубину, вызвана силами давления воды на барабанную перепонку уха. Термометры для измерения температуры на глубине моря должны быть очень прочными, чтобы давление воды не могло раздавить их.

Давление в жидкости обусловлено изменением ее объема – сжатием. По отношению к изменению объема жидкости обладают упругостью. Силы упругости в жидкости – это и есть силы давления. Таким образом, если жидкость действует с силами давления на соприкасающиеся с ней тела, это значит, что она сжата. Так как при сжатии плотность вещества растет то можно сказать, что жидкости обладают упругостью по отношению к изменению плотности.

Давление в жидкости перпендикулярно любой поверхности, помещенной в жидкость. Давление в жидкости на глубине h равно сумме давления на поверхности и величины, пропорциональной глубине:

Благодаря тому, что жидкости могут передавать статическое давление, практически не менее своей плотности они могут использоваться в устройствах, дающих выигрыш в силе: гидравлическом прессе.

Закон Архимеда

На поверхность твердого тела, погруженного в жидкость, действуют силы давления. Так как давление увеличивается с глубиной погружения, то силы давления, действующие на нижнюю часть жидкости и направленные вверх, больше, чем силы, действующие на верхнюю его часть и направленные вниз, и мы можем ожидать, что равнодействующая сил давления будет направлена вверх. Равнодействующая сил давления на тело, погруженное в жидкость, называется поддерживающей силой жидкости.

Если тело, погруженное в жидкость, предоставить самому себе, то оно потонет, останется в равновесии или всплывет на поверхность жидкости в зависимости от того, меньше ли поддерживающая сила, чем сила тяжести, действующая на тело, равна ей или больше ее.

Закон Архимеда заключается в том, что на тело, находящееся в жидкости, действует направленная вверх выталкивающая сила, равная весу вытесненной жидкости. На тело, погружённое в жидкость, действует выталкивающая сила (называемая силой Архимеда)

где ρ - плотность жидкости (газа), - ускорение свободного падения, а V - объём погружённого тела (или часть объёма тела, находящаяся ниже поверхности).

Если тело, погруженное в жидкость, подвешено к чаше весов, то весы показывают разность между весом тела в воздухе и весом вытесненной жидкости. Поэтому закону Архимеда придают иногда следующую формулировку: тело, погруженное в жидкость, теряет в своем весе столько, сколько весит вытесненная им жидкость.

Интересно отметить такой экспериментальный факт, что, находясь внутри другой жидкости большего удельного веса, жидкость по закону Архимеда «теряет» свой вес и принимает свою естественную, шарообразную форму.

Испарение

В поверхностном слое и вблизи поверхности жидкости действуют силы, которые обеспечивают существование поверхности и не позволяют молекулам покидать объем жидкости. Благодаря тепловому движению некоторая часть молекул имеет достаточно большие скорости, чтобы преодолеть силы, удерживающие молекулы в жидкости, и покинуть жидкость. Это явление называется испарением. Оно наблюдается при любой температуре, но его интенсивность возрастает с увеличением температуры.

Если покинувшие жидкость молекулы удаляются из пространства вблизи поверхности жидкости, то, в конце концов, вся жидкость испарится. Если же молекулы, покинувшие жидкость не удаляются, то они образуют пар. Молекулы пара, попавшие в область вблизи поверхности жидкости, силами притяжения втягиваются в жидкость. Этот процесс называется конденсацией.

Таким образом, в случае неудаления молекул скорость испарения уменьшается со временем. При дальнейшем увеличении плотности пара достигается такая ситуация, когда число молекул, покидающих жидкость за некоторое время, будет равно числу молекул, возвращающихся в жидкость за то же время. Наступает состояние динамического равновесия. Пар в состоянии динамического равновесия с жидкостью называется насыщенным.

С повышением температуры плотность и давление насыщенного пара увеличиваются. Чем выше температура, тем большее число молекул жидкости обладает энергией, достаточной для испарения, и тем большей должна быть плотность пара, чтобы конденсация могла сравняться с испарением.

Кипение

Когда при нагревании жидкости достигается температура, при которой давление насыщенных паров равно внешнему давлению, устанавливается равновесие между жидкостью и ее насыщенным паром. При сообщении жидкости дополнительного количества теплоты происходит немедленное превращение соответствующей массы жидкости в пар. Этот процесс называется кипением.

Кипение – это интенсивное испарение жидкости, происходящее не только с поверхности, но и во всем ее объеме, внутрь образующихся пузырьков пара. Чтобы перейти из жидкости в пар, молекулы должны приобрести энергию, необходимую для преодоления сил притяжения, удерживающих их в жидкости. Например, для испарения 1 г воды при температуре 100° С и давлении, соответствующем атмосферному давлению на уровне моря, требуется затратить 2258 Дж, из которых 1880 идут на отделение молекул от жидкости, а остальные – на работу по увеличению объема, занимаемого системой, против сил атмосферного давления (1 г водяных паров при 100° С и нормальном давлении занимает объем 1,673 см 3 , тогда как 1 г воды при тех же условиях – лишь 1,04 см 3).

Температурой кипения является та температура, при которой давление насыщенных паров становится равным внешнему давлению. При увеличении давления температура кипения увеличивается, а при уменьшении - уменьшается.

По причине изменения давления в жидкости с высотой ее столба, кипение на различных уровнях в жидкости происходит, строго говоря, при различной температуре. Определенную температуру имеет лишь насыщенный пар над поверхностью кипящей жидкости. Его температура определяется только внешним давлением. Именно эта температура имеется в виду, когда говорят о температуре кипения.

Температуры кипения различных жидкостей сильно отличаются, между собой и это находит широкое применение в технике, например, при разгонке нефтепродуктов.

Количество тепла, которое необходимо подвести, для того чтобы изотермически превратить в пар определенное количество жидкости, при внешнем давлении, равном давлению ее насыщенных паров, называется скрытой теплотой парообразования. Обычно эту величину соотносят к одному грамму, или одному молю. Количество теплоты, необходимое для изотермического испарения моля жидкости называется молярной скрытой теплотой парообразования. Если эту величину поделить на молекулярный вес, то получится удельная скрытая теплота парообразования.

Поверхностное натяжение жидкости

Свойство жидкости сокращать свою поверхность до минимума называется поверхностным натяжением. Поверхностное натяжение – явление молекулярного давления на жидкость, вызванное притяжением молекул поверхностного слоя к молекулам внутри жидкости. На поверхности жидкости молекулы испытывают действие сил, которые не являются симметричными. На находящуюся внутри жидкости молекулу со стороны соседей в среднем равномерно со всех сторон действует сила притяжения, сцепления. Если поверхность жидкости увеличивать, то молекулы будут двигаться против действия удерживающих сил. Таким образом, сила, стремящаяся сократить поверхность жидкости, действует в противоположном направлении внешней растягивающей поверхность силе. Эта сила называется силой поверхностного натяжения и вычисляется по формуле:

Коэффициент поверхностного натяжения()

Длина границы поверхности жидкости

Обратим внимание, что у легко испаряющихся жидкостей (эфира, спирта) поверхностное натяжение меньше, чем у жидкостей нелетучих (у ртути). Очень мало поверхностное натяжение у жидкого водорода и, особенно, у жидкого гелия. У жидких металлов поверхностное натяжение, наоборот, очень велико. Различие в поверхностном натяжении жидкостей объясняется различием в силах сцепления у разных молекул.

Измерения поверхностного натяжения жидкости показывают, что поверхностное натяжение зависит не только от природы жидкости, но и от его температуры: с повышением температуры различие в плотностях жидкости уменьшаются, в связи с этим уменьшается и коэффициент поверхностного натяжения - .

Благодаря поверхностному натяжению любой объем жидкости стремится уменьшить площадь поверхности, уменьшая таким образом и потенциальную энергию. Поверхностное натяжение – одна из упругих сил, ответственных за движение ряби на воде. В выпуклостях поверхностное тяготение и поверхностное натяжение тянут частицы воды вниз, стремясь сделать поверхность снова гладкой.

Жидкостные пленки

Все знают, как легко получить пену из мыльной воды. Пена – это множества пузырьков воздуха, ограниченных тончайшей пленкой из жидкости. Из жидкости, образующей пену, легко можно получить и отдельную пленку.

Эти пленки очень интересны. Они могут быть чрезвычайно тонки: в наиболее тонких частях их толщина не превосходит стотысячной доли миллиметра. Несмотря на свою тонкость, они иногда очень устойчивы. Мыльную пленку можно растягивать и деформировать, сквозь мыльную пленку может протекать струя воды, не разрушая ее.

Чем же объяснить устойчивость пленок? Непременным условием образования пленки является прибавление к чистой жидкости растворяющихся в ней веществ, притом таких, которые сильно понижают поверхностное натяжение

В природе и технике мы обычно встречаемся не с отдельными пленками, а с собранием пленок – пеной. Часто можно видеть в ручьях, там, где небольшие струйки падают в спокойную воду, обильное образование пены. В этом случае способность воды пениться связана с наличием в воде особого органического вещества, выделяющегося из корней растений. В строительной технике используют материалы, имеющие ячеистую структуру, вроде пены. Такие материалы дешевы, легки, плохо проводят теплоту и звуки и достаточно прочны. Для их изготовления добавляют в растворы, из которых образуются стройматериалы, вещества, способствующие пенообразованию.

Смачивание

Небольшие капельки ртути, помещенные на стеклянную пластинку, принимают шарообразную форму. Это является результатом действия молекулярных сил, стремящихся уменьшить поверхность жидкости. Ртуть, помещенная на поверхность твердого тела, не всегда образует круглые капли. Она растекается по цинковой пластинке, причем общая поверхность капельки, несомненно, увеличится.

Капля анилина имеет шарообразную форму тоже только тогда, когда она не касается стенки стеклянного сосуда. Стоит ей коснуться стенки, как она тотчас прилипает к стеклу, растягиваясь по нему и приобретая большую общую поверхность.

Это объясняется тем, что в случае соприкосновения с твердым телом силы сцепления молекул жидкости с молекулами твердого тела начинают играть существенную роль. Поведение жидкости будет зависеть от того, что больше: сцепление между молекулами жидкости или сцепление молекулы жидкости с молекулой твердого тела. В случае ртути и стекла силы сцепления между молекулами ртути и стекла малы по сравнению с силами сцепления между молекулами ртути, и ртуть собирается в каплю.

Такая жидкость называется не смачивающей твердое тело. В случае же ртути и цинка силы сцепления между молекулами жидкости и твердого тела превосходят силы сцепления, действующие между молекулами жидкости, и жидкость растекается по твердому телу. В этом случае жидкость называется смачивающей твердое тело.

Отсюда следует, что, говоря о поверхности жидкости, надо иметь в виду не только поверхность, где жидкость граничит с воздухом, но также и поверхность, граничащую с другими жидкостями и ли с твердым телом.

В зависимости от того, смачивает ли жидкость стенки сосуда или не смачивает, форма поверхности жидкости у места соприкосновения с твердой стенкой и газом имеет тот или иной вид. В случае несмачивания форма поверхности жидкости у края круглая, выпуклая. В случае смачивания жидкость у края принимает вогнутую форму.

Капиллярные явления

В жизни мы часто имеем дело с телами, пронизанными множеством мелких каналов (бумага, пряжа, кожа, различные строительные материалы, почва, дерево). Приходя в соприкосновение с водой или другими жидкостями, такие тела часто впитывают их в себя. На этом основано действие полотенца при вытирании рук, действие фитиля в керосиновой лампе и т. д. Подобные явления можно также наблюдать в узких стеклянных трубочках. Узкие трубочки называются капиллярными или волосными.

При погружении такой трубочки одним концом в широкий сосуд в широкий сосуд происходит следующее: если жидкость смачивает стенки трубки, то она поднимется над уровнем жидкости в сосуде и притом тем выше, чем уже трубка; если жидкость не смачивает стенки, то наоборот уровень жидкости в трубке устанавливается ниже, чем в широком сосуде. Изменение высоты уровня жидкости в узких трубках или зазорах получило название капиллярности. В широком смысле под капиллярными явлениями понимают все явления, обусловленные существованием поверхностного натяжения.

Высота поднятия жидкости в капиллярных трубках зависит от радиуса канала в трубке, поверхностного натяжения и плотности жидкости. Между жидкостью в капилляре и в широком сосуде устанавливается такая разность уровней h, чтобы гидростатическое давление rgh уравновешивало капиллярное давление:

где s - поверхностное натяжение жидкости

R – радиус капилляра.

Высота поднятия жидкости в капилляре пропорциональна ее поверхностному натяжению и обратно пропорциональна радиусу канала капилляра и плотности жидкости (закон Жюрена)

Понравилась статья? Поделиться с друзьями: