Презентация на тему неорганические полимеры. Презентация на тему полимеры Получение крахмала или целлюлозы

Как называется реакция, приведенная на слайде?

Реакция поликонденсации тоже приводит к образованию полимеров.

Сравните реакции полимеризации и поликонденсации.

Ответы учеников.

Сходство: исходные вещества низкомолекулярные соединения, продукт полимер.

Различия: продукт только полимер при реакции полимеризации и кроме полимера низкомолекулярное вещество при реакции поликонденсации.

Полимеров, или ВМС, много, необходимо в них ориентироваться.

По какому признаку можно разделить полимеры на слайде?

Ответы – по способу получения. Запись в тетради.

Перед вами клубок шерсти и пластмассовый треугольник, по какому признаку мы разделяем данные полимеры?

Ответ – по происхождению. Запись в тетради.

Посмотрите на данную классификацию, на чем она основана?

Ответ – на отношении полимеров к нагреванию. Запись в тетради.

Все классификации рассмотреть в рамках урока невозможно.

Почему человечество широко применяет полимеры?

Ответы – полимеры имеют полезные свойства.

Свойства у полимеров действительно удивительные:

Способность к деформации,

Плавление, растворение,

Пластификация, наполнение, накопление статического электричества, структурирование, другие.

В настоящее время полимерные материалы находят широкое применение в различных областях медицины.

Сейчас широко ведутся работы по синтезу физиологически активных полимерных лекарственных веществ, полусинтетических гормонов и ферментов, синтетических генов. Большие успехи достигнуты в создании полимерных заменителей плазмы человеческой крови. Синтезированы и с хорошими результатами применяются в клинической практике эквиваленты различных тканей и органов человека: костей, суставов, зубов. Созданы протезы кровеносных сосудов, искусственные клапаны и желудочки сердца. Созданы аппараты: «искусственное сердце-легкое» и «искусственная почка».

Медицинские полимеры и используются для культивирования клеток и тканей, хранения и консервации крови, кроветворной ткани – костного мозга, консервации кожи и многих других органов. На основе синтетических полимеров создаются противовирусные вещества, противораковые препараторы.

Использование медицинских полимеров для изготовления хирургических инструментов и оборудования (шприцы и системы для переливания крови разового использования, бактерицидные пленки, нити, клетки) коренным образом изменило и усовершенствовало технику медицинского обслуживания.

Мы не представляем свою жизнь без волокон (одежда, промышленность) и без пластмасс. Из пластмасс делают:

аудио, видео аксессуары;

канцелярские товары;

настольные игры;

одноразовая посуда;

хозяйственные товары (пакеты, пленки и мешки).

ВМС несут большую опасность , если не знать их свойства. Так как производство полимеров приносит большой доход, то в погоне за прибылью недобросовестные производители могут выпускать некачественную продукцию. В этом случае могут помочь различные журналы, которые начали учить потребителей разбираться в том многообразии товаров, которые предлагает рынок. На телевидении появилась очень интересная передача “Контрольная закупка”. В качестве примера рассказываю о безопасном обращении с пластмассовой посудой. Посуда из полимерных материалов безвредна, если использовать ее по назначению. Обязательно следует обращать внимание на маркировку и рекомендующие надписи типа; “Для пищи”, “Не для пищевых продуктов”, “Для холодной пищи”. Использование посуды не по назначению может вызвать не только изменения вкуса, но даже переход в пищу веществ, опасных для организма. Тарелки, кружки и другая пластмассовая посуда предназначена в основном для кратковременного контакта с пищей, а не для хранения ее, при котором из полимерных материалов могут выделяться нежелательные продукты. Не рекомендуется хранить, например, в полиэтиленовой таре жиры, варенье, вино, квас.

А как же планета?

Если бы удалось собрать в одно место все металлы, выплавляемые за год, то получился бы шар диаметром около 500 м., на втором месте бумажный шарик –450 м., четвертый пластмассовый шар – 400 м. Темпы прироста производства полимеров во всем мире необычайно высоки. Где же в конце концов все это богатство окажется? Ребята дают правильный ответ, что на мусорной свалке. Предлагаю учащимся заглянуть в ведро для мусора. Ставлю на стол ведро, в котором лежат предметы, которые почти ежедневно попадают в него - пакет из-под молока, картофельные очистки, стаканчик из-под сметаны, капроновый чулок, консервная банка, бумага и т.д. Задаю учащимся вопрос: что будет с этим мусором через год, через 10 лет? В результате беседы делаем вывод, что планета замусоривается.

Выход есть – утилизация.

1 слайд

2 слайд

Определение полимеров ПОЛИМЕРЫ (от поли... и греч. meros - доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. Термин «полимеры введен Й. Я. Берцелиусом в 1833.

3 слайд

Классификация По происхождению полимеры делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе - органические, элементоорганические, неорганические полимеры.

4 слайд

Строение ПОЛИМЕРЫ - вещества, молекулы которых состоят из большого числа структурно повторяющихся звеньев - мономеров. Молекулярная масса полимеров достигает 106, а геометрические размеры молекул могут быть настолько велики, что растворы этих веществ по свойствам приближаются к коллоидным системам.

5 слайд

Строение По строению макромолекулы подразделяются на линейные, схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный); разветвленные, имеющие боковые ответвления (например, амилопектин); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

6 слайд

Реакция полимеризации Реакцию образования полимера из мономера называют полимеризацией. В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

7 слайд

Получение полипропилена n СН2 = СН → (- СН2 – СН-)n | | СН3 СН3 пропилен полипропилен Выражение в скобках называют Структурным звеном, а число n в формуле полимера – степенью полимеризации.

8 слайд

Реакция сополимеризации Образование полимера из разных веществ непредельного характера, например, бутадиенстирольного каучука. nСН2=СН-СН=СН2 + nСН2=СН → (-СН2-СН=СН-СН2- СН2-СН-)n ǀ ǀ C6H5 C6H5

9 слайд

Реакция поликонденсации Помимо реакции полимеризации полимеры можно получить поликонденсацией - реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

10 слайд

Получение крахмала или целлюлозы nС6Н12О6 → (- С6Н10О5 -)n + Н2О глюкоза полисахарид

11 слайд

Классификация Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов, а пространственные - класс термореактивных полимеров или реактопластов.

12 слайд

Применение Благодаря механической прочности, эластичности, электроизоляционным и другим свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов - пластические массы, резины, волокна, лаки, краски, клеи, ионообменные смолы. В технике полимеры нашли широкое применение в качестве электроизоляционных и конструкционных материалов.

13 слайд

Полимеры – хорошие электроизоляторы, широко используются в производстве разнообразных по конструкции и назначению электрических конденсаторов, проводов, кабелей, На основе полимеров получены материалы, обладающие полупроводниковыми и магнитными свойствами. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Слайд 1

9 класс (обязательный минимум по химии) ПОЛИМЕРЫ

Составитель презентации – учитель химии МОУ СОШ г. Холма Насонова Т.А.

Слайд 2

План урока.

Природные и синтетические полимеры. Способы получения полимеров. Основные понятия химии полимеров. Пластмассы и волокна.

Слайд 3

1. Природные и синтетические полимеры.

Полимеры – это соединения, без которых человек уже не может обойтись. С этими соединениями знакомы все – от самых маленьких до пожилых, от домохозяек до специалистов многих отраслей промышленности. Что же такое полимеры? Полимеры – это высокомолекулярные соединения, состоящие из множества одинаковых структурных звеньев.

Слайд 4

По происхождению полимеры делятся на природные и синтетические.

Природные полимеры – это, например, натуральный каучук, крахмал, целлюлоза, белки, нуклеиновые кислоты. Без некоторых из них невозможна жизнь на нашей планете.

ДНК крахмал белок

Слайд 5

Синтетические полимеры – это многочисленные пластмассы, волокна, каучуки.

Они играют большую роль в развитии всех отраслей промышленности, сельского хозяйства, транспорта, связи. Как без природных поли - меров невозможна сама жизнь,так без синтетических полимеров немыслима современная цивилизация.

Слайд 6

2. Способы получения полимеров.

Как же образуются эти необычные соединения? Полимеры получают в основном двумя методами - реакциями полимеризации и реакциями поликонденсации. В реакцию полимеризации вступают молекулы, содержащие кратную (чаще – двойную) связь. Такие реакции протекают по механизму присоединения и всё начинается с разрыва двойных связей.

Слайд 7

С реакцией полимеризации мы знакомились на примере получения полиэтилена:

nСН2=СН2 (- СН2 – СН2 -)n Для реакции поликонденсации нужны особые молекулы. В их состав должны входить две или более функциональные группы (-ОН, -СООН, -NН2 и др.). При взаимодействии таких групп происходит отщепление низкомолекулярного продукта (например, воды) и образование новой группировки, которая связывает остатки реагирующих между собой молекул.

Слайд 8

В реакцию поликонденсации вступают, например, аминокислоты. При этом образуется биополимер- белок и побочное низкомолекулярное вещество – вода:

…+ Н NН-СН(R)–СООН+ … Н NН-СН(R)–СООН+… …-NН-СН(R)-СО- NН-СН(R)-СО-… + nН2О Реакцией поликонденсации получают многие полимеры, в том числе капрон.

Слайд 9

3. Основные понятия химии полимеров.

Макромолекула – от греч. макрос – большой, длинный. Мономер – исходное вещество для получения полимеров. Полимер – много мер (структурное звено). Структурное звено – многократно повторяющиеся в макромолекуле группы атомов. Степень полимеризации n – число структурных звеньев в макромолекуле.

Слайд 10

n X (-X-)n Х – мономер, (-Х-) – структурное звено, n - степень полимеризации. (- Х-)n - макромолекулы полимеров.

В зависимости от строения основной цепи полимеры имеют разные структуры: линейную (например, полиэтилен), разветвленную (например, крахмал) и пространственную (например, вторичная и третичная структура белков).

Слайд 11

Структуры полимеров.

линейная разветвлённая

Пространствен-ная

Слайд 12

4. Пластмассы и волокна.

Обычно полимеры редко используют в чистом виде. Как правило из них получают полимерные материалы. К числу последних относятся пластмассы и волокна. Пластмасса – это материал, в котором связующим компонентом служит полимер, а остальные составные части – наполнители, пластификаторы, красители, противоокислители и др. вещества.

Слайд 13

Особая роль отводится наполнителям, которые добавляют к полимерам. Они повышают прочность и жёсткость полимера, снижают его себестоимость. В качестве наполнителей могут быть стеклянные волокна, опилки, цементная пыль, бумага, асбест и др.

Поэтому такие пластмассы, как, например, полиэтилен, поливинилхлорид, полистирол, фенолформальдегидные, широко применяются в различных отраслях промышленности, сельского хозяйства, в медицине, культуре, в быту.

Слайд 14

Волокна – это вырабатываемые из природных или синтетических полимеров длинные гибкие нити, из которых изготавливается пряжа и другие текстильные изделия.

Волокна подразделяются на природные и химические. Природные, или нату - ральные, волокна - это материалы животного или растительного происхождения: шёлк, шерсть, хлопок, лён.

Слайд 15

Химические волокна получают путём химической переработки природных (прежде всего целлюлозы) или синтетических полимеров.

К химическим волокнам относятся вискозные, ацетатные волокна, а также капрон, нейлон, лавсан и многие другие.

«Получение полимеров» - Полимеры. Биополимеры. Каучуки. Способы образования полимеров. Геометрическая форма макромолекул. Мономер. Полимеризация. Основные понятия химии полимеров. Классификация полимеров. Степень полимеризации. Иерархическая подчиненность основных понятий. Поликонденсация. Полимер.

«Характеристики полимеров» - Пластмассы и волокна. Применение в медицине. Способы получения полимеров. Натуральный каучук. Полимеры. Поликонденсация. Шерсть. Основные понятия. Форма макромолекул. Применение полимеров. Синтетический каучук. Ударопрочность. Кокосовая койра. Пластификаторы. Полимерные трубы. Природный полимер. Изделия из резины.

«Температура полимеров» - Методы определения теплостойкости. Фенилон получают поликонденсацией дихлор-ангидрида изофталевой кислоты и м-фенилендиамина в эмульсии или растворе. Является идеальным материалом триботехнического назначения. В обоих случаях температура в ходе измерений повышается по линейному закону. Методика определения теплостойкости состоит в следующем.

«Открытие каучука» - Во второй половине XIX века спрос на натуральный аучук быстро нарастает. Во начале XIX века началось исследование каучука. Англичанин Томас Гэнкок в 1826 г. открыл явление пластикации каучука. В 1890-е гг. появляются первые каучуковые шины. Открытие каучука. Синтетический каучук. Процесс был назван вулканизацией.

«Неорганические полимеры» - Роль неорганических полимеров. Получение пластической серы. Различные типы неорганических полимеров. Классификация полимеров. Ромбическая и моноклинная модификации. Кристаллическая решетка кварца. Аллотропные модификации углерода. Абразивный материал. Сера. Базальт. Применение аллотропных модификаций углерода.

«Природные и синтетические полимеры» - Аминокислоты. Ацетатные волокна. Мономер. Материалы животного или растительного происхождения. Структуры полимеров. Полимеры делятся на природные и синтетические. Природные и синтетические полимеры. Пластмассы и волокна. Особые молекулы. Волокна. Способы получения полимеров. Основные понятия химии полимеров.

Всего в теме 16 презентаций

Слайд 2

Определение полимеров

ПОЛИМЕРЫ (от поли... и греч. meros - доля, часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. Термин «полимеры введен Й. Я. Берцелиусом в 1833.

Слайд 3

Классификация

По происхождению полимеры делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе - органические, элементоорганические, неорганические полимеры.

Слайд 4

Строение

ПОЛИМЕРЫ - вещества, молекулы которых состоят из большого числа структурно повторяющихся звеньев - мономеров. Молекулярная масса полимеров достигает 10 6, а геометрические размеры молекул могут быть настолько велики, что растворы этих веществ по свойствам приближаются к коллоидным системам.

Слайд 5

По строению макромолекулы подразделяются на линейные, схематически обозначаемые -А-А-А-А-А-, (например, каучук натуральный); разветвленные, имеющие боковые ответвления (например, амилопектин); и сетчатые или сшитые, если соседние макромолекулы соединены поперечными химическими связями (например, отвержденные эпоксидные смолы). Сильно сшитые полимеры нерастворимы, неплавки и неспособны к высокоэластическим деформациям.

Слайд 6

Реакция полимеризации

Реакцию образования полимера из мономера называют полимеризацией. В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

Слайд 7

Получение полипропилена

n СН2 = СН → (- СН2 – СН-)n || СН3 СН3 пропилен полипропилен Выражение в скобках называют Структурным звеном, а число n в формуле полимера – степенью полимеризации.

Слайд 8

Реакция поликонденсации

Помимо реакции полимеризации полимеры можно получить поликонденсацией - реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

Слайд 9

Получение крахмала или целлюлозы

nС6Н12О6 → (- С6Н10О5 -)n + Н2О глюкоза полисахарид

Слайд 10

Классификация

Полимеры линейные и разветвленные образуют класс термопластических полимеров или термопластов, а пространственные - класс термореактивных полимеров или реактопластов.

Слайд 11

Применение

Благодаря механической прочности, эластичности, электроизоляционным и другим свойствам изделия из полимеров применяют в различных отраслях промышленности и в быту. Основные типы полимерных материалов - пластические массы, резины, волокна, лаки, краски, клеи, ионообменные смолы. В технике полимеры нашли широкое применение в качестве электроизоляционных и конструкционных материалов. Полимеры – хорошие электроизоляторы, широко используются в производстве разнообразных по конструкции и назначению электрических конденсаторов, проводов, кабелей, На основе полимеров получены материалы, обладающие полупроводниковыми и магнитными свойствами. Значение биополимеров определяется тем, что они составляют основу всех живых организмов и участвуют практически во всех процессах жизнедеятельности.

Понравилась статья? Поделиться с друзьями: