Микрофлора желудочно-кишечного тракта животных. Микрофлора организма животных

Тело более или менее крупного животного представляет для микроорганизмов целый мир с множеством экологических ниш. В естественных условиях организм любого животного населен множеством микроорганизмов. Среди них могут быть случайные формы, но для многих видов тело животного является основным или единственным местом их обитания. Характер и механизмы взаимодействий микроорганизмов с макроорганизмом многообразны и играют решающую роль в жизни и эволюции многих видов микроорганизмов. Для животного микроорганизмы важный экологический фактор, определяющий многие стороны его эволюционных изменений.

С современных позиций нормальную микрофлору рассматривают как совокупность микробиоценозов, занимающих многочисленные экологические ниши на коже и слизистых всех открытых внешней среде полостей организма. В значительной части микрофлора одинакова у всех животных в сравниваемых биотопах, но в составе микробиоценоза имеются индивидуальные различия. Аутомикрофлора здорового животного остается постоянной и поддерживается гомеостазом. Ткани и органы, не сообщающиеся с внешней средой, стерильны. Организм и его нормальная микрофлора составляют единую экологическую систему: микрофлора служит своеобразным «экстракорпоральным органом», играющим важную роль в жизнедеятельности животного. Будучи биологическим фактором защиты, нормальная микрофлора является тем барьером, после прорыва которого индуцируется включение неспецифических механизмов защиты.

Микрофлора кожи

Кожный покров тела имеет свои области, свой рельеф, свою «географию». Клетки эпидермиса кожи постоянно отмирают и пластинки рогового слоя слущиваются. Поверхность кожи постоянно «удобряется» продуктами выделения сальных и потовых желез. Потовые железы обеспечивают микроорганизмов солями и органическими соединениями, в том числе азотсодержащими. Выделения сальных желез богаты жирами.

Микроорганизмы заселяют главным образом участки кожи, покрытые волосами и увлажненные потом. На участках кожи, покрытых волосами, находится около 1,5*106 клеток/см2. Некоторые виды локализуются в строго определенных участках.

Обычно на коже преобладают грамположительные бактерии. Типичными обитателями кожи являются различные виды Staphylococcus,Micrococcus,Propionibacterium,Corynebacierium,Brevibacicrium,Acinetobacter. Для нормальной микрофлоры кожи характерны такие видыStaphylococcus, какSt.epidermidis, нoне упомянутыйSt.aureus, развитие которого здесь свидетельствует о неблагоприятных изменениях микрофлоры организма. Представители родаCorynebacteriumиногда составляют до 70% всей кожной микрофлоры. Некоторые виды являются липофильными, т. е. образуют липазы, разрушающие выделения жировых желез.

Большинство микроорганизмов, населяющих кожу, не представляют какой-либо опасности для хозяина, но некоторые, и, прежде всего St.aureusусловно патогенны.

Нарушение нормального сообщества бактерий кожи может иметь неблагоприятные последствия для макроорганизма.

На кожных покровах микроорганизмы подвержены действию бактерицидных факторов сального секрета, повышающих кислотность (соответственно значение рН снижается). В подобных условиях живут преимущественно Staphylococcusepidermidis, микрококки, сарцины, аэробные и анаэробные дифтероиды. Другие виды (Staphylococcusaureus, бета-гемолитические и негемолитические стрептококки) правильнее рассматривать как временные. Основные зоны колонизации – эпидермис (особенно роговой слой), кожные железы (сальные и потовые) и верхние отделы волосяных фолликулов. Микрофлора волосяного покрова идентична микрофлоре кожи.

Микрофлора желудочно-кишечного тракта.

Наиболее активно микроорганизмы заселяют желудочно-кишечный тракт ввиду обилия и разнообразия в нем питательных веществ.

Кишечный тракт животных - обычное место обитания разнообразных микроорганизмов, преимущественно анаэробных. Характер взаимоотношений этих микроорганизмов с хозяином может быть различным и в первую очередь зависит от особенностей его рациона.

В кишечном тракте хищных или насекомоядных животных находится корм, по своему биохимическому составу близкий к составу их тела. Он является также прекрасным субстратом для развития микроорганизмов. Поэтому здесь складываются конкурентные взаимоотношения микроорганизмов с хозяином. Последний не может полностью исключить возможность их развития, но ограничивает его благодаря секреции кислоты и быстрому пищеварению, в результате чего почти все продукты деятельности пищеварительных ферментов потребляются животным. Более медленное прохождение корма через толстый кишечник способствует бурному развитию микроорганизмов, и в прямой кишке уже содержится огромное их количество.

В кишечник травоядных попадает большое количество клетчатки. Известно, что только некоторые беспозвоночные могут переваривать клетчатку самостоятельно. В большинстве случаев переваривание целлюлозы происходит за счет разрушения ее бактериями, а животное потребляет в качестве пищи продукты ее деградации и сами клетки микроорганизмов. Таким образом, здесь наблюдается кооперация, или симбиоз. Наибольшего совершенства этот тип взаимодействий достиг у жвачных животных. В их рубце корм задерживается достаточно долго, чтобы могли быть разрушены доступные микроорганизмам компоненты растительных волокон. В этом случае, однако, бактерии используют значительную часть растительного белка, который в принципе мог бы быть разрушен и использован самим животным. Однако у многих животных взаимодействие с кишечной микрофлорой носит промежуточный характер. Например, у лошадей, кроликов, мышей в кишечнике корм в значительной степени используется до того, как начнется бурное развитие бактерий. Однако в отличие от хищников, у таких животных корм дольше задерживается в кишечнике, что способствует ее сбраживанию бактериями.

Наиболее активная жизнедеятельность микроорганизмов всегда происходит в толстом кишечнике. Анаэробы здесь развиваются, осуществляя брожения, при которых образуются органические кислоты-преимущественно уксусная, пропионовая и масляная. При ограниченном поступлении углеводов образование этих кислот энергетически выгоднее, чем образование этанола и молочной кислоты. Происходящее здесь же разрушение белков приводит к снижению кислотности среды. Накапливающиеся кислоты могут быть использованы животным.

Содержимое кишечника - благоприятная среда обитания микроорганизмов. Однако здесь действует и ряд неблагоприятных факторов, способствующих адаптации и специализации кишечных микроорганизмов. Так, в толстом кишечнике накапливаются желчные кислоты до концентрации, уже угнетающих рост некоторых бактерий. Масляная и уксусная кислоты также обладают бактерицидными свойствами.

В состав кишечной микрофлоры различных животных входит ряд видов бактерий, способных разрушать целлюлозу, гемицеллюлозы, пектины. У многих млекопитающих в кишечнике обитают представители родов BacteroidesиRuminococcus.B.succinogenesбыл обнаружен в кишечнике лошадей, коров, баранов, антилоп, крыс, обезьян.R.albusиR.flavefaciens, активно разрушающие клетчатку, обитают в кишечнике лошадей, коров, кроликов. К сбраживающим клетчатку кишечным бактериям относятся такжеButyrivibriofibrisolvensиEubacteriumcellulosolvens. РодыBacteroidesиEubacteriumпредставлены в кишечнике млекопитающих рядом видов, некоторые из которых разрушают также белковые субстраты.

В составе кишечной микрофлоры разных животных обнаруживаются характерные различия. Так, у собак относительно много стрептококков и клостридий.

В кишечнике, рубце жвачных животных и других органах представители нормальной микрофлоры распределены определенным образом. Часть форм приурочена к поверхности клеток, другие находятся на некотором удалении от ткани. Состав прикрепленных форм может изменяться при ослаблении или заболевании хозяина, и даже при стрессе. При нервных стрессах, например, за счет активизации протеаз происходит разрушение белка на поверхности глоточного эпителия, что позволяет прикрепляться клеткам условно патогенной бактерии Pseudomonasaeruginosa, которые начинают здесь активно размножаться вместо безвредных представителей нормальной микрофлоры. Образовавшаяся популяцияPs.aeruginosaв дальнейшем может вызвать поражение легких.

Рубец жвачных обильно заселен большим числом видов бактерий и простейших. Анатомическое строение и условия в рубце почти идеально отвечают требованиям для жизнедеятельности микроорганизмов. В среднем, по данным различных авторов, количество бактерий составляет 109*1010 клеток в 1 г рубцового содержимого.

Помимо бактерий, в рубце осуществляют расщепление кормов и синтез важных органических соединений для животного организма также различные виды дрожжей, актиномицетов и простейших. Инфузорий в 1 мл может быть несколько (3-4) миллионов.

Видовой состав рубцовых микроорганизмов со временем претерпевает изменения.

В молочный период в рубце у телят преобладают лактобактерии и определенные виды протеолитических бактерий. Полное становление рубцовой микрофлоры завершается при переходе животных на кормление грубыми кормами. У взрослых жвачных видовой состав рубцовых бактерий, по мнению некоторых авторов, постоянен, существенным образом не изменяется в зависимости от кормления, времени года и ряда других факторов. Представляют наиболее важное в функциональном отношении значение следующие виды бактерий: Bacteroidessuccinogenes,Butyrivibriofibrisolvens,Ruminococcusflavefaciens,R.aibus,Cillobacteriumcellulosolvens,Clostridiumcellobioparus,Clostridiumlocheadiи др.

Утилизация в рубце жвачных моносахаридов (глюкоза, фруктоза, ксилоза и др.), поступающих с кормом, а главным образом образующихся при гидролизе полисахаридов, осуществляется в основном рубцовыми микроорганизмами. Из-за наличия в рубце анаэробных условий углеводы в клетках рубцовых микроорганизмов окисляются не полностью, конечными продуктами брожения являются органические кислоты, углекислота, этанол, водород, метан. Часть продуктов гликолиза (молочная, янтарная, валериановая кислоты и некоторые другие вещества) используется самими бактериями в качестве источника энергии и для синтеза клеточных соединений. Конечные продукты углеводного обмена в рубце жвачных – летучие жирные кислоты – используются в обмене веществ животного-хозяина.

Ацетат, один из основных продуктов рубцового метаболизма, является предшевственником жира молока, источником энергии для животных. Пропионат и бутират используются животными для синтеза углеводов.

В настоящее время известно, что белок в рубце расщепляется под действием протеолитических ферментов микроорганизмов с образованием пептидов и аминокислот, которые в свою очередь, подвергаются воздействию дезаминаз с образованием аммиака. Дезаминирующими свойствами обладают культуры, относящиеся к видам: Selenomonasruminantium,Megasphaeraeisdenii,Bacteroidesruminicolaи др. Большая часть потребляемого с кормом растительного белка превращается в рубце в белок микробиальный. Как правило, процессы расщепления и синтеза белка идут одновременно. Значительная часть рубцовых бактерий, являясь гетеротрофами, для синтеза белка использует неорганические соединения азота. Наиболее важные в функциональном отношении рубцовые микроорганизмы (Bacteroidesruminicola,Bacteroidessuccinogenes,Bacteroidesamylophilusи др.) для синтеза азотистых веществ своих клеток используют аммиак.

Тонкий отдел кишечника содержит сравнительно не большое количество микроорганизмов. В этом отделе кишечника чаще всего находятся устойчивые к действию желчи энтерококки, кишечная палочка, ацидофильные и споровые бактерии, актиномицеты, дрожжи и др.

Толстый отдел кишечника наиболее богат микроорганизмами. Основные обитатели его – энтеробактерии, энтерококки, споровые бактерии, актиномицеты, дрожжи, плесени, большое количество гнилостных и некоторых патогенных анаэробов (Cl.sporogenes,Cl.putrificus,Cl.perfringens,Cl.tetani,F.necrophorum). В 1 г экскрементов травоядных может содержаться до 3,5 млрд. различных микроорганизмов. Микробная масса составляет около 40% сухого вещества испражнений.

В толстом отделе кишечника протекают сложные микробиологические процессы, связанные с расщеплением клетчатки, пектиновых веществ, крахмала. Микрофлору желудочно-кишечного тракта принято делить на облигатную (молочнокислые бактерии, E.coli, энтерококки,Cl.perfringens,Cl.sporogenesи др.), которая адаптировалась к условиям этой среды и стала постоянным ее обитателем, и факультативную, изменяющуюся в зависимости от вида корма и воды.

Микрофлора органов дыхания.

Верхние отделы дыхательных путей несут высокую микробную нагрузку – они анатомически приспособлены для осаждения бактерий из вдыхаемого воздуха. Помимо обычных негемолитических и зеленящих стрептококков, непатогенных нейссерий, стафилококков и энтеробактерий, в носоглотке можно обнаружить менингококки, пиогенные стрептококки и пневмококки. Верхние отделы дыхательных путей у новорожденных обычно стерильны и колонизируются в течение 2-3 суток.

Исследования последних лет показали, что наиболее часто из дыхательных путей клинически здоровых животных выделяется сапрофитная микрофлора: S.saprophiticus, бактерии родовMicrococcus,Bacillus, коринеформные бактерии, негемолитические стрептококки.

Кроме того, выделены патогенные и условно-патогенные микроорганизмы: альфа- и бета – гемолитические стрептококки, стафилококки (S.aureus), энтеробактерии (эшерихии, сальмонеллы, протей и др.), пастереллы, псевдомонады, и в единичных случаях, грибы родаCandida.

В носовой полости обнаруживается наибольшее число сапрофитов и условно-патогенных микроорганизмов. Они представлены стрептококками, стафилококками, сарцинами, пастереллами, энтеробактериями, коринеформеными бактериями, грибами рода Candida,Ps.aeruginosaи бацилами. Трахея и бронхи заселены аналогичными группами микроорганизмов. В легких обнаружены отдельные группы кокков (бета- гамолитическими,S.aureus), микрококки, пастереллы,E.coli.

При снижении иммунитета у животных (особенно молодняка) микрофлора органов дыхания проявляет болезнетворные свойства.

Микрофлора мочеполовой системы.

Микробный биоценоз органов мочеполовой системы более скудный. Верхние отделы мочевыводящих путей обычно стерильны; в нижних отделах доминируют Staphylococcusepidermidis, негемолитические стрептококки, дифтероиды; часто выделяют грибы родовCandida,ToluropsisиGeotrichum. В наружных отделах доминируетMycobacteriumsmegmatis.

Основной обитатель влагалища – B.vaginalevulgare, обладающая выраженным антогонизмом к другим микробам. При физиологическом состоянии мочеполовых путей микрофлора обнаруживается только в их наружных отделах (стрептококки, молочнокислые бактерии).

Матка, яичники, семенники, мочевой пузырь в норме стерильны. У здоровой самки плод в матке стерилен до момента начавшихся родов. При гинекологических заболеваниях видовой состав микрофлоры изменяется.

Роль нормальной микрофлоры.

Нормальная микрофлора играет важную роль в защите организма от патогенных микробов, например, стимулируя иммунную систему, принимая участие в реакциях метаболизма.

Нормальная микрофлора составляет конкуренцию для патогенной; механизмы подавления роста последней достаточно разнообразны. Основной механизм – избирательное связывание нормальной микрофлорой поверхностных рецепторов клеток, особенно эпителиальных. Большинство представителей резидентной микрофлоры проявляет выраженный антагонизм в отношении патогенных видов. Эти свойства особенно ярко выражены у бифидобактерий и лактобактерий.

Нормальная микрофлора – неспецифический стимулятор («раздражитель») иммунной системы; отсутствие нормального микробного биоценоза вызывает многочисленные нарушения в иммунной системе. Другая роль микрофлоры была установлена после того, как были получены безмикробные животные. Антиген представителей нормальной микрофлоры вызывают образование антител в низких титрах. Они преимущественно представлены IgA, выделяющимися на поверхность слизистых оболочек.IgAсоставляют основу местной невосприимчивости к проникающим возбудителям и не дают возможности комменсалам проникать в глубокие ткани. Нормальная кишечная микрофлора играет огромную роль в метаболических процессах организма и поддержании их баланса.

Общепринятый факт – ведущая роль нормальной микрофлоры в обеспечении организма ионами Fe2+,Ca2+, витаминами К,D, группы В (особенно В1, рибофлавин), никотиновой, фолиевой и пантотеновой кислотами. Кишечные бактерии принимают участие в инактивации токсичных продуктов эндо- и экзогенного происхождения. Кислоты и газы, выделяющиеся в ходе жизнедеятельности кишечных микробов, оказывают благоприятное действие на перистальтику кишечника и своевременное его опорожнение.

Таким образом, действие микрофлоры тела на организм складывается из следующих факторов:

· Нормальной микрофлоре принадлежит важнейшая роль в формировании иммунологической реактивности организма.

· Представители нормальной микрофлоры благодаря продуцированию разнообразных антибиотических соединений и выраженной антагонистической активности предохраняют органы, сообщающиеся с внешней средой, от внедрения и безграничного размножения в них патогенных микроорганизмов.

· Микробные ассоциации являются существенным звеном в печеночно-кишечной циркуляции таких важнейших компонентов желчи, как соли желчных кислот, холестерина и желчные пигменты.

· Микрофлора в процессе жизнедеятельности синтезирует витамин К и ряд витаминов группы В, некоторые ферменты и, возможно, другие, пока неизвестные, биологически активные соединения.

· Микрофлора исполняет роль дополнительного ферментного аппарата, расщепляя клетчатку и другие трудно перевариваемые составные части корма.

Нарушение видового состава нормальной микрофлоры под влиянием инфекционных и соматических заболеваний, а также в результате длительного и нерационального использования антибиотиков приводит к состоянию дисбактериоза, который характеризуется изменением соотношения различных видов бактерий, нарушением усвояемости продуктов пищеварения, изменением ферментативных процессов, расщеплением физиологических секретов. Для коррекции дисбактериоза следует устранить факторы, вызвавшие этот процесс.

35. Патогенность и вирулентность микроорганизмов. Количественное определение вирулент­
ности. Факторы патогенности микроорганизмов.

Патогенность – видовой генетический признак, потенциальная возможность вызывать при благоприятных условиях инфекционный процесс.

Вирулентность #и $– степень патогенности, единицы измерения – летальная и инфекц. дозы. В. может

Минимальная смертельная доза – минимум возбудителя, который вызывает гибель большинства.

Безусловно смертельная доза – 100% гибели.

Средняя летальная доза – мин, убивающий 50% опыт. животных.

Токсичность – сп-ность м-о обз-вать токсины, вредно дейст-е на оргм носителя, влияя на его метаболизм.

Инвазионность – сп-ность м-о преодолевать защит барьеры орг-ма, проникать в органы, ткани, размножаться там и подавлять защитные средства орг-ма.

Факторы патогенности:

1. микробные ферменты диполимеризир. структуры

2. адгезия – приспособления для адсорбции.

3. антифагоцитные поверхностные структуры.

4. токсины. Различают экзо(продукты обмена Гр+) и эндо(продукты распада Гр-) токсины.

Токсины – гемолизин(растворяет эритроциты), лейкоцидин (парализует и разрушает лейкоциты), нейротоксин (на ЦНС), энтеротоксин (расстройства ЖКТ).

Количественное определение вирулентности.

Для определения вирулентности стафилококков существуют несколько различных методов заражения белых мышей.

Наиболее простым является введение 0,1 мл суточной бульонной культуры испытуемого стафилококка в хвостовую вену. Учет гибели животных осуществляется в течение 10 суток, регистрируют наличие абсцессов в почках.

Удобно пользоваться способом Badenski и сотр. (1958), Суточная бульонная культура центрифугируется при 3000 об/мин - 30 мин. Полученный осадок ресуспендируется в половинном объеме декантата и в количестве 0,05 мл вводится 6 мышам позади глазного яблока в окологлазничную клетчатку. Культуру, вызывающую гибель половины и более зараженных мышей в течение 6 дней, считают вирулентной.

При этих методах заражения вирулентной культурой у животных развивается общин септический процесс с преимущественным поражением почек. Основная гибель мышеи происходит на 3-5-й день после заражения.

Другие способы заражения белых мышей (внутрибрюшинный и интраназальный) требуют в десятки

раз большей заражающей дозы, максимум гибели мышей приходится на 1-2-е сутки, что характеризует преимущественно токсический компонент процесса (С. А. Анатолий, И. И. Антоновская, 1967).

В то же время ряд исследователей отдают предпочтение более простому технически внутрибрюшинному способу заражения мышей, который одновременно позволяет изучать клеточные и гуморальные механизмы развития инфекции.

Сопоставление вирулентности стафилококков для белых мышей с отдельными факторами их патогенности показало, что вирулентность штаммов, по данным большого числа исследователей, коррелирует с уровнем альфа-гемотоксина. Что касается других признаков патогенности и их корреляции с вирулентностью, то получены разноречивые сведения. Так, по данным С. А. Анатолия (1969), вирулентность штаммов коррелировала с продукцией бета-гемолизина, летального фактора, лецитовителлазы, гиалуронидазы и коагулазы. А. К. Акатов (1968) не отмечает корреляции вирулентности с коагулазной, лециговител-лазной, фибринолитической активностью, не установлена корреляция с дельта-токсигенностью.

Для сравнения вирулентности стафилококковых культур можно использовать их способность вызывать дермонекротическую реакцию у кроликов.

Готовят 4-миллиардную взвесь суточной агаровой культуры стафилококка в физиологическом растворе, а из полученной густоты делают разведения, чтобы получить 2- и 1-миллиардные взвеси. Из каждого разведения в объеме 0,1 мл, что составляет 100, 200, 400 миллионов микробных тел, вводят кролику в выстриженную или депилированную накануне кожу. На одном кролике можно одновременно поставить до 8 внутрикожных проб. Ежедневно отмечают проявления дермонекротической реакции, а окончательно на 4-е сутки. За минимальную дермонекротическую дозу принимают то наименьшее количество культуры, которое дает некроз на 4-е сутки

40. Неспецифические факторы защиты организма. Фагоцитарная теория иммунитета (И.И.
Мечников).

кожа и слизистые- единственный барьер препятствующий проник-ию м-о в организм. Они выделяют бактерицидные в-ва, в результате чего число микробов на их поверхности уменьш-ся. Цидное дейст-е кожи выше тогда, когда она чистая. Слиз.глаз преграждает путь микробам благодаря лизоциму, также рот пол-ть. Если м-о проникают ч\з поврежд-ю кожу, то на их пути встрч-ся лимф узлы. Больш роль играет печень. К естеств преградам можно отнести однокамер жел-к(НС1).

Гуморал-е фак-ры (жид-ти орг-ма): в сыв-ке крови содерж-ся AT, комплемент, пропердин и др.комплемент содерж в сыв крови, термолабилен; -сис-ма белков сыв крови, участ-щих в р-циях гумор-го нммун-та и фагоцитозе. Он взаимодейс-т в комплексе АГ-АТ.Пропердин представ-т собой гамма-глобулин, предохраняет орг-зм от Г- м-о.Лизоцим -лизирует Г+ м-о.Лизины -растворяют бак и эритроциты.Лактоферрин - непегментирова-й гликопротеид, обладающийFe-связывающей акт-ю:- фактор местного иммунитета, защищ-ий от м-о. эпит покровы.

Интарферон -фаткор противовирус-й защиты. Ф-я обеспечения генетич-го гомсосгази кл:a-интерферон или лейкоцитарный, кот продуц-т лейкоциты,обработпнные вирусами или др АГ.b- интерферон (фибробластный), кот продуц-т фибробласты, обработ-ые вирусами или АГ.a- иb- отнесены к типуJ.y-интерферон, продуц-т лимфоци-ты и макрофаги, активируемые невирус индукт-ми. Интерферон усил цитотоксическос дейст-е сенснби-лизир-х лимфоцитов и К-кл, оказ-т противо-опухолевое и др дейст-я.Ингибиторы (подавляют): термолабильные и термостабильмые(до 100 °С)

Клеточные факторы естественной резистентности.

Система фагоцитов. Фагоцитоз – специальная форма эндоцитоза, при которой поглощаются крупные частицы (микробы, клетки и др.). У высших животных фагоцитоз осуществляется только специфическими клетками (нейтрофилами и макрофагами), которые происходят от одной общей клетки-предшественника и защищают животных и человека от инфекции, поглощая вторгшиеся микроорганизмы, а также утилизируют старые или поврежденные клетки или клеточные оболочки.

Среди макрофагов различают подвижные (циркулирующие) и неподвижные (оседлые) клетки. Подвижные макрофаги – это моноциты периферической крови, а неподвижные – макрофаги печени, селезенки, лимфатических узлов, выстилающие стенки мелких кровеносных сосудов и других органов и тканей.

Активность фагоцитов связана с наличием в сыворотке крови опсонинов. Опсонины – белки нормальной сыворотки крови, вступающие в соединение с микробами, благодаря чему последние становятся более доступными для фагоцитов.

Различают фагоцитоз завершенный (при котором происходит гибель фагоцитированных клеток) и незавершенный (гибель микроорганизмов внутри фагоцита не наступает).

3. Структура иммуноглобулинов различных классов и их функции.

ИММУНОГЛОБУЛИНЫ (лат. immunisсвободный, избавленный от чего-либо +globulusшарик) - сывороточные и секреторные белки человека или животных, обладающие активностью антител и участвующие в механизме защиты против возбудителей инфекционных болезней.

Bммуноглобулины продуцируются В-лимфоцитами (плазматическими клетками). Мономеры иммуноглобулинов состоят из двух тяжелых (Н-цепи) и двух легких (L-цепи) полипептидных цепей, связанных дисульфидной связью. Эти цепи имеют константные (С) и вариабельные (V) участки. Папаин расщепляет молекулу иммуноглобулина на два одинаковых антигенсвязывающих фрагмента -Fab(Fragmentanligenbinding) иFc(Fragmenlcrislalhzable). По типу тяжелой цепи различают 5 классов иммуноглобулиновIgG,IgM,IgA,IgD,IgE.

В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM,IgG,IgA,IgE,IgD.

Иммуноглобулины – белки с четвертичной структурой, т.е. их молекулы построены из нескольких полипептидных цепей. Молекула каждого класса состоит из четырех полипептидных цепей – двух тяжелых и двух легких, связанных между собой дисульфидными мостиками. Легкие цепи – структура общая для всех классов иммуноглобулинов. Тяжелые цепи имеют характерные структурные особенности, присущие определенному классу, подклассу.

Антитела, входящие в определенные классы иммуноглобулинов, обладают различными физическими химическими, биологическими и антигенными свойствами.

Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса). Все указанные антигенные различия определяются с помощью специфических сывороток.

Иммуноглобулины: сывороточные, секреторные, поверхностные.

Классы Ig:

IgG– нейтрализуют токсины, проходят сквозь плаценту, вторичная или хронич. инфекция.

IgM– первый иммунный ответ, не проходят сквозь плаценту, способны агглютинировать бакт, нейт-вать вирусы, связывать комплемент, ат-ать фагоцитоз.

IgA– секреторные и сывороточные, местный иммунитет.

IgE– АГ аллергии и гиперчувствительности.

IgD– на поверхности В-л, играют роль аутоиммунных ипр.

4. Антитела, природа и функция антител. Антителообразование: первичный и вторичный от­
веты.

В организме у-

Вырабатываются плазмоцитами.

Антитела - иммуноглобулины, продуцируемые В-лимфоцитами (плазматическими клетками). Мономеры иммуноглобулинов состоят из двух тяжелых (Н-цепи) и двух легких (L-цепи) полипептидных цепей, связанных дисульфидной связью. Эти цепи имеют константные (С) и вариабельные (V) участки. Папаин расщепляет молекулу иммуноглобулина на два одинаковых антигенсвязывающих фрагмента - Fab (Fragment anligen binding) и Fc (Fragmenl crislalhzable). По типу тяжелой цепи различают 5 классов иммуноглобулинов IgG, IgM, IgA, IgD, IgE.

Активный центр антител - антигенсвязывающий участок Fab-фрагмента иммуноглобулина, образованный гипервариабельными участками Н- и L-цепей, связывает эпитопы антигена. В активном центре имеются специфичные комплементарные участки к определенным антигенным эпитопам Fc-фрагмент может связывать комплемент, взаимодействует с мембранами клеток и участвует в переносе IgG через плаценту.

Домены антител - компактные структуры, скрепленные дисульфидной связью. Так, в IgG различают: V-домены легких (VL) и тяжелых (VH) цепей антитела, расположенные в N-концевои части Fab-фрагмента; С-домены константных участков легких цепей (СL) ; С-домены константных участков тяжелых цепей (СH1, СH2, СH3). Комплементсвязывающий участок находится в СH2-домене.

Изотип антител (класс, подкласс иммуноглобулинов - IgM, IgGl, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE) определяется С-доменам тяжелых цепей; выявляется с помощью антисыворотки против Fc-фрагментов тяжелых цепей в реакции радиальной иммунодиффузии и др.

Идиотип антител определяется антигенсвязывающими центрами Fab-фрагментов антител, т.е. антигенными свойствами вариабельных участков (V-областей). Идиотип состоит из набора идиотопов - антигенных детерминант V-области антитела.

Некоторые функциональные особенности антител

Антитела, например IgG, вместе с другими onсонинами усиливают фагоцитоз.

Аффинность (аффинитет) антител - сродство антител к антигенам.

Авидность антител - прочность связи антитела с антигеном и количество связанного антигена антителами.

Антитела – белки, относящиеся к иммуноглобулинам, которые синтезируются лимфоидными и плазматическими клетками в ответ на попадание в организм антигена, обладающими способностью специфически связываться с ним. Антитела составляют более 30% белков сыворотки крови, обеспечивают специфичность гуморального иммунитета благодаря способности связываться только с тем антигеном, который стимулировал их синтез.

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вируснейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплементсвязывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

В соответствии с Международной классификацией сывороточные белки, несущие функцию антител, получили название иммуноглобулинов (Ig). В зависимости от физикохимических и биологических свойств различают иммуноглобулины классов IgM, IgG, IgA, IgE, IgD.

Синтез и динамика образования антител

Антитела вырабатывают плазматические клетки селезенки, лимфатических узлов, костного мозга, пейеровых бляшек. Плазматические клетки (антителопродуценты) происходят из предшественников В-клеток после их контакта с антигеном. Механизм синтеза антител аналогичен синтезу любых белков и происходит на рибосомах. Легкие и тяжелые цепи синтезируются отдельно, затем соединяются на полирибосомах, а окончательная их сборка происходит в пластинчатом комплексе.

Динамика образования антител.

При первичном иммунном ответе в антителообразовании различают две фазы: индуктивную (латентную) и продуктивную. Индуктивная фаза – это период от момента парентерального введения антигена до появления антигенреактивных клеток (продолжительность не более суток). В эту фазу происходит пролиферация и дифференцировка лимфоидных клеток в направлении синтеза IgM. Вслед за индуктивной фазой наступает продуктивная фаза антителообразования. В этот период, примерно до 10…15 суток уровень антител резко возрастает, при этом уменьшается число клеток, синтезирующих IgM, и нарастает продукция IgA.

Механизм образ-я антител

АТ выраб-ся плазматич-ми кл, нах-ся в селе­зенке, л/у, костном мозге, пейероаых бляшках. Плазматич-е кл (АТ-продуценты) происходят из предшественников В-кл, подвергшихся контакту с АГ. В-кл и их потомки функционир-т по клональному принципу: по мере развития иммунного ответа они дифферннцир-сяи созревают. Механизм; синтез AT происходит на рибосомах. Легкие и тяжелые цепи, из кот состоит мол AT, синтезир-ся отдельно, затем соединяются на полирибосо­мах, и окончат-я сборка происходит в пла­стинчатом комплексе. Одна плазмати-я кл может переключаться с синтеза IgM на синтез IgG.

В первичном иммунном ответе в АТобр-ии различают 2 фазы:1)индуктивную (латентную) - от момента введения АГ до появления лимфойдных АГ реактивных кл (не более суток), происходит дифференцировка лим­фойдных кл в направлении синтеза IgMи 2)продуктивную(10-1 5 дней) - кол-воATрезко увелич-ся и нарастает продукцияIgG. Вторичный иммунный ответ базир-ся на иммунологич-й памяти (Т- и В-лнмфоцитов) при повторном введении АГ - уси­ленный ответ.

Первичный и вторичный иммунный ответ.

Первичный наблюдается при первичном введении АГ. Для начала процесса синтеза антител (АТ) достаточно кратковременного (5-15мин) контакта АГ с иммунокомпетентными клетками. В первые 6-12 ч (не более 20) после первичного введения антигена (АГ) протекает индуктивная фаза АТ-образования. Происходит распознавание обработка АГ МФ, передача АГ-ой информации Лимф, образование плазмоцитов. 2-я фаза – продуктивная. Кол-во АТ в теч.4-15 дней растет экспоненциально. С начала продуктивной фазы преобладают синтез IgM, затем сменяется на синтез IgG.

Затем фаза врем. рефрактерности – это срок, необхдимая для восстановления полной чувствительности иммунокомпетентных органов и он определяет интервалы м/у введением иммуногенов. После первичного ИО образуется определенное количесвтво долгоживущих клеток памяти, которые сохраняют информацию об АГ и при повторном попадании в организм обуславливают. вторичный ИО. Он характеризуется признаками:

Стимулируется меньшей дозой АГ

Продукция АТ начинается быстрее (индуктивная фаза 5-6 ч)

Характеризуется выработкой большего кол-ва АТ (не менее чем в 3 раза чем при первичном ИО)

Пик синтеза Ig раньше (3-5 день)

Аффинитет АТ выше

Вырабатываются АТ большей авидности

IgG сразу характеризуются высокой аффинностью (при первичном ИО аффинность их вначале невысокая)

Синтезированные АТ дольше сохраняются в организме

7. Реакции агглютинации.

Реакция агглютинации бактерий протекает в две фазы. Первая, специфическая, невидимая фаза реакции агглютинации состоит во взаимодействии антител с антигенными детерминантами, расположенными на поверхности бактерий и других корпускулярных частиц. Вторая, видимая, фаза реакции, протекающая лишь в присутствии электролита в среде, заключается в склеивании и оседании на дно пробирки иммунных комплексов в виде хлопьев или зерен, видимых невооруженным глазом.

Кроме специфической агглютинации бактерий, вызванной антителами, возможна спонтанная агглютинация (в отсутствие иммунной сыворотки). Спонтанную агглютинацию дают R-фор-мы бактерий, не образующие гомогенной взвеси в изотоническом растворе хлорида натрия и осаждающиеся в виде клеточных агрегатов. При кислой реакции среды в результате снятия одноименного заряда с поверхности бактериальных клеток в изоэлектрической зоне происходит склеивание - наступает «кислотная» агглютинация.

В лабораторной диагностике инфекционных заболеваний реакцию агглютинации очень часто применяют как для идентификации видов и сероваров бактерий с помощью диагностических агглютинирующих сывороток, так и для определения присутствия антител в сыворотке больного по известным антигенам (диагностикумам), т. е. для серодиагностики.

Реакция агглютинации.

Сущность реакции заключается во взаимодействии антител-агглютинов и антигена-агглютиногена, в результате которого образ


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15

Микрофлора тела животных и её физиологическое значение

Некоторые микроорганизмы являются постоянными обитателями организма животных. Другие временные - поступают с водой, кормом, воздухом.

М/ф кожи. Пост-ые: стафилококки, стрептококки, актиномицеты, сарцины, киш-ая и синегнойн. палочки. Зависит от условий содержания.

М/ф дых. путей. У новорожд. нет. Стрептококки, стафилококки, актиномицеты, микоплазмы, плесн. и дрож. грибы.

М/ф желудка. Бедна из-за желудочного сока и кислой среды. Сарцины, молочнокислые бак, актиномицеты, энтерококки.

М/ф рубца. Более богата из-за эпифитной и почвенной м/ф. Происх. сложные биохим. и микробиол. процессы с участием целлюлозораз-их бактерий. Гнилостные бактерии и возб-ли брожений.

М/ф тонкого. Более бедна. Энтерококки, ацидофильные, споровые микробы. актином., кишечная палочка.

М/ф толстого. Наиболее богатая. Энтерококки, стаф, стрепт, дрожжи, плесени, актином, гнилостные м/о. У перебол-их в фекалиях встреч. патоген. м/о, которые могут заражать здоровых (реконвалесценты).

М/ф мочеполов. органов. У здоровых только на наружных участках. стаф, стреп, микрококки, микобактерии..

Роль м/ф: формирование иммун.активности, антогонизм патогенной м/ф, влияет на фунции пищев-го тракта, уч-ют в циркуляции компонентов желчи, расщепление клетчатки и др. компон-ов корма.

Распространение микробов в природе

Распространению способствуют малые размеры, ничтожно малый вес, огромная скорость размножения, способность адаптироваться к изменениям окр. среды, температурный фактор.

Микрофлора воздуха и воды. Количественное и качественное определение микрофлоры воздуха и воды

В воде наиболее заселена 10-100 см глубина. Выше действуют УФЛ. Самоочищение водоема: быстрое течение, УФЛ, минерализация орг. соединений микроорганизмами, t. В быту - фильтры. В чистых водах преобладают кокки, в загрязненных - палочки. Могут быть патогенные: сибирская язва, бруцеллез, рожа, пастереллез.. Коли-титр - минимальный (ГОСТ 333) V воды в котором обнаруживается 1 кишечая палочка. Коли-индекс - кол-во кишечных палочек в 1 л воды (ГОСТ 2-3).

Воздух - неблагоприятная среда для м/о. Но короткое пребывание микроорганизмов в воздухе достаточно для передачи патогенов от больных. Зависит от вентиляции помещений и санитарно-гигиенических норм. Сапрофиты: микрококки, палочки, плесневые и дрожжевые грибы, актиномицеты. Условно-патогенные: споры грибов. Патогогенные: микобактерии, пневмококки, стрептококки.

Определение микрофлоры воздуха и воды:

1. ОМЧ: Для воды - берут пробу воды с помощью батометров, делают разведения 1:10, 1:100, заливают МПА, ставят в термостат 24 часа 37 градусов, затем подсчитывают выросшие колонии. Норма для питьевой воды не более 100 КОЕ(колониеобразующих единиц).

Для воздуха - метод седиментации (чашка Петри с МПА, термостат, подсчет), аспирационный метод с использованием аппарата Кротова (аппарат всасывает воздух, оседает на чашке Петри с плотной средой, подсчет), фильтрационный метод, в том числе метод Дьякова (воздух пропускают через МПА и стеклянные бусы, заливают спец. средой для стафилококков и стрептококков, подсчитывают)

2. Санитарно-показательные микробы: Для воды - общие (ОКБ 37 градусов) и термотолерантные (ТКБ 44 градуса) колиформные бактерии - бактерии группы кишечной палочки (БГКП). Так же определяют коли-титр и коли-индекс методам мембранных фильтров (мембранные фильтры кладут на асбестовый фильтр Зейтца, фильтруют воду, пинцетом перекладывают на Эндо в чашку Петри, инкубируют, подсчитывают БГКП (Гр-, оксидаза-, споры-, лактоза+)), бродильным метом (посев на среду Кесслера с лактозой, инкубация, пересев на Эндо подсчитывают БГКП). Энтерококки - среда щелочно-полимиксиновая. Cl. Perfringens - среда Вильсона-Блера, железосульфитный агар.

Для воздуха - гемолитические стрептококки, стафилококки (солевые среды - Чистовича).

3. Патогенные микроорганизмы.

Интизаров Михаил Михайлович, академик РАСХН, проф .

ПРЕДИСЛОВИЕ

При рассмотрении способов борьбы с многими инфекционными болезнями бактериальной и вирусной этиологии чаще сосредоточивают основное внимание на патогенных микроорганизмах - возбудителях этих заболеваний, реже обращают внимание и на сопутствующую обычную микрофлору тела животных. Но в ряде случаев именно обычная микрофлора приобретает большое значение в возникновении или развитии болезни, способствуя либо препятствуя ее проявлению. Иногда обычная микрофлора становится источником тех патогенных или условнопатогенных инфекционных агентов, которые обуславливают эндогенное инфицирование, проявление секундарных инфекций и т. д. При других обстоятельствах комплекс обычной микрофлоры тела животного блокирует пути и возможности развития инфекционного процесса, вызываемого некоторыми патогенными микроорганизмами. Поэтому знать состав, свойства, количественные ха­рактеристики, биологическую значимость разных групп и представителей обычной микрофлоры организма (млекопи- тающих, в том числе домашних, сельскохозяйственных животных и человека) должны врачи, биологи, работники животноводства, преподаватели вузов и научные работники.

Введение

Микрофлору организма млекопитающих, включая сельскохозяйственных, домашних животных и человека, стали изучать вместе с развитием микробиологии как науки, с появлением великих открытий Л. Пастера, Р. Коха, И. И. Мечникова, их учеников и сотрудников. Так, в 1885 г. Т. Эшерих выделил из фекалий детей обязательного представителя микрофлоры кишечника - кишечную палочку, встречающуюся практически у всех млекопитающих, птиц, рыб, рептилий, амфибий, насекомых и т. д. Через 7 лет появились первые данные о значении кишечной палочки для жизнедеятельности, здоровья макроорганизма. С. О. Иенсен (1893) установил, что разные типы и штаммы кишечной палочки могут быть как патогенными для животных (вызывают у телят септическое заболевание и диарею), так и непатогенными, т. е. совершенно безвредными и даже полезными обитателями кишечни ка животных и человека. В 1900 г. Г. Тиссье открыл в фекалиях новорожденных бифижбактер«и - известй: и обязательных представителей нормальной кишечной микро­флоры организма во все периоды его жизни. Молочнокислые палочки (L . acidophilus) были выделены Моро в 1900 г.

Определения, терминология

Нормальная микрофлора - это открытый биоценоз микроорганизмов, встречающихся у здоровых людей и животных (В. Г. Петровская, О. П. Марко, 1976). Этот биоценоз должен быть свойствен совершенно здоровому организму; он физиологичен, то есть способствует поддержанию здорового статуса макроорганизма, правильному отправлению его нормальных физиологических функций. Вся же микрофлора тела животного может быть названа еще аутомикрофлорой (согласно значению слова «ауто»), то есть микрофлора любого состава (О. В. Чахава, 1982) данного организма в норме и при патологии.

Нормальную микрофлору, связанную только со здоровым статусом организма, ряд авторов подразделяет на две части:

1) облигатную, постоянную часть, сложившуюся в филогенезе и онтогенезе в процессе эволюции, которую еще называют индигенной (т. е. местной), аутохтонной (коренной), резидентной и т. д.;

2) факультативную, или транзиторную.

В состав аутомикрофлоры периодически могут включаться и случайно проникающие в макроорганизм патогенные микроорганизмы.

Видовой состав и количественная характеристика микрофлоры важнейших областей тела животного

С организмом животного ассоциированы, как правило, десятки и сотни видов различных микроорганизмов. Они , как пишут В. Г. Петровская и О. П. Марко (1976), являются облигатными для организма в целом. Многие виды микроорганизмов встречаются во многих областях тела, изменя­ясь лишь количественно. Количественные вариации возможны у той же микрофлоры в зависимости от вида млекопитающих. Большинству же животных свойственны общие усредненные показатели для ряда областей их тела. Например, для дистальных, нижних отделов желудочно-кишечного тракта характерны следующие микробные группы, выявляемые в содержимом кишечника или фекалиях (табл. 1).

В верхней части табл. 1. приведены лишь облигатноана­эробные микроорганизмы - представители кишечной флоры. В настоящее время установлено, что на долю строго анаэробных видов в кишечнике приходится 95-99%, а всеаэробные и факультативно анаэробные виды составляют оставшиеся 1-5%.

Несмотря на то, что в кишечнике обитают десятки и сотни (до 400) известных видов микроорганизмов, там могут существовать еще и совершенно неизвестные микроорганизмы Так, в слепой и ободочной кишках некоторых грызунов в последние десятилетия было установлено наличие так называемых нитчатых сегментированных бактерий, которые очень интимно связаны с поверхностью (гликокаликсом, щеточной каймой) эпителиальных клеток слизистой оболочки кишечника. Утонченный конец этих длинных, нитевидных бактерий углублен между микроворсинками щеточной каймы эпителиальных клеток и, по-видимому, фиксирован там так, что вдавливает мембраны клеток. Этих бактерий может быть так много, что они, подобно траве, покрывают поверхность слизистой оболочки. Это тоже строгие анаэробы (облигатные представители кишечной микрофлоры грызунов), полезные для организма виды, во многом нормализующие функции кишечника. Однако эти бактерии были обнаружены только бактериоскопическими методами (с помощью электронной сканирующей микроскопии срезов кишечной стенки). Нитчатые бактерии не растут на известных нам питательных средах, лишь могут переживать на плотных агаризованных средах не более одной недели) J . P . Koopman et . al ., 1984).

Распределение микроорганизмов по отделам желудочно-кишечного тракта

Из-за высокой кислотности желудочного сока в желудке содержится небольшое количество микроорганизмов; з основном это кислотоустойчивая микрофлора - лактобактерии, стрептококки, дрожжи, сардины и т. д. Количество микробов там - 10 3 /г содержимого.

Микрофлора 12-перстной и тощей кишок

В кишечнике йезде есть микроорганизмы. Если бы их не было в каком-либо отделе, то не возникало бы перитонита микробной этиологии при травмировании кишечника. Только в проксимальных участках тонкого кишечника видов микрофлоры меньше, чем в толстом. Это лактобактерии, энтерококки, сардины, Грибы, в более нижних отделах нарастает количество бифидобактерий, кишечных палочек. Количественно эта микрофлора может отличаться у разных особей. Возможна минимальная степень обсемененности (10 1 - 10 3 /гсодержимого), и значительная - 10 3 - 10 4 /г Количество и состав микрофлоры толстого кишечника представлены в табл 1.

Микрофлора кожи

Основные представители микрофлоры кожи - дифтерои- ш (коринебактерии, пропионовые бактерии), плесневые грибы, дрожжи, споровые аэробные палочки (бациллы), стафилококки (в первую очередь преобладает S . epidermidis , но на здоровой коже з небольшом количестве присутствует и S . aureus).

Микрофлора респираторного тракта

На слизистых оболочках респираторного тракта больше всего микроорганизмов в области носоглотки, за гортанью количество их значительно меньше, еще меньше в крупных бронхах, а в глубине легких здорового организма микрофлоры вообще нет.

В носовых ходах есть дифтероиды, в первую очередь ко- рннебактерии, постоянны стафилококки (резидентен S . epi dermidis), нейссерии, гемофильные бактерии, стрептококки (альфа-гемолитические); в носоглотке - коринебактерии, стрептококки (S. mitts , S . salivarius и др.), стафилококки, нейссеоии, вайлоНеллы, гемофильные бактерии, более транзиторно встречаются энтеробактерии, бактероиды, грибы, энтерококки, лактобактерии, синегнойная палочка, аэробные палочки типа В. subtil is и др.

Микрофлору глубжележащих отделов дыхательных путей изучали меньше (A — Halperin — Scott et al ., 1982). У людей это связано с трудностями получения материала. У животных материал более доступен для исследования (можно использовать убитых животных). Мы изучали микрофлору средних дыхательных путей у здоровых свиней, включая их миниатюрную (лабораторную) разновидность; результаты пред ставлены в табл. 2.

Первых четырех представителей выявляли постоянно (100%), менее резидентно (1/2-1/3 случаев) устанавливали: лактобактерии (10 2 -10 3), кишечную палочку (10 2 -Ш 3), плесневые грибы (10 2 -10 4), дрожжи. Другие авторы отмечали транзиторное носительство протея, синегнойной палочки, клостридий, представителей аэробных бацилл. Нами в этом же плане однажды был выявлен Bacteroides melaninoge — nicus .

Микрофлора родовых путей млекопитающих

Исследования последних лет, в основном зарубежных авторов (Boyd , 1987; А. В. Onderdonk et al ., 1986; J . M . Miller et al ., 1986; A . N. Masfari et al ., 1986; H . Knothe u . a . 1987), показали, что микрофлора, колонизующая (т. е. заселяющая) слизистые оболочки родовых путей, весьма разнообразна и богата в видовом отношении. Широко представлены компоненты нормальной микрофлоры, в ее составе много строго анаэробных микроорганизмов (табл. 3).

Если сравнить микробные виды родовых путей с микрофлорой других областей тела, то обнаруживают, что микрофлора родовых путей матери по этому признаку аналогична основным группам микробных обитателей тела. будущего молодого организма, то есть облигатных представителей своей нормальной микрофлоры животное получает при прохождении через родовые пути матери. Дальнейшее заселение тела молодого животного происходит от этой расплодки эволюционно обоснованной микрофлоры, полученной от матери. Следует учесть, что у здоровой самки плод в матке стерилен до момента начавшихся родов.

Однако правильно сложившаяся (отобранная в процессе эволюции) нормальная микрофлора организма животного в полном объеме населяет его тело не сразу, а за несколько дней, успевая размножиться в определенных соотношениях. В. Браун приводит следующую последовательность ее становления в первые 3 дня жизни новорожденного: бактерии обнаруживают в первых же пробах, взятых с тела новорожденного сразу после рождения. Так, на слизистой оболочке носа вначале преобладающими оказывались коагулазоотрицательные стафилококки (S . epidermidis); на слизистой глот­ки - те же стафилококки и стрептококки, а также небольшое количество эптеробактерий. В прямой кишке в 1-й день уже были обнаружены кишечные палочки, энтерококки, те же стафилококки, а к третьему дню после рождения устанавливался микробный биоценоз, в основном обычный для нормальной микрофлоры толстого кишечника (W . Braun , F . Spenckcr u . a ., 1987).

Отличия микрофлоры тела разных видов животных

Вышеприведенные облигатные представители микрофлоры свойственны большинству домашних, сельскохозяйственных млекопитающих животных и организму человека. В зависимости от вида животного скорее может меняться количество микробных групп, но не видовой их состав. У собак количество кишечных палочек и лактобактерий в толстом кишечнике такое же, как приведено в табл. 1. Однако бифидобактерии были на порядок ниже (10 8 в 1 г), на порядок вышебыло стрептококков (S . lactis , S . mitis, энтерококки) и клостридий. У крыс и мышей (лабораторных) на столько же было увеличено количество молочнокислых палочек (лактобактерий), больше стрептококков и клостридий. У этих животных в кишечной микрофлоре оказалось мало кишечных палочек и было уменьшено число бифидобактерий. Снижено количество кишечных палочек и у морских свинок (по данным В. И. Орловского). В фекалиях морских свинок, согласно нашим исследованиям, кишечные палочки содержались в пределах 10 3 -10 4 в 1 г. У кроликов преобладали бактероиды (до 10 9 -10 10 в 1 г), было значительно уменьшено количество кишечных палочек (часто даже до 10 2 в 1 г) и лак­тобактерий.

У здоровых свиней (по нашим данным) микрофлора трахеи и крупных бронхов ни количественно, ни качественно заметно не отличалась от усредненных показателей и весьма сходна с микрофлорой человека. Их кишечную микрофлору тоже характеризовало определенное сходство.

Для микрофлоры рубца жвачных животных характерны специфические особенности. Во многом это связывают с наличием бактерий - расщепителей клетчатки. Однако целлюлолитические бактерии (и вообще фибролитические), характерные для пищеварительного тракта жвачных, отнюдь не являются симбионтами одних лишь этих животных. Так, в слепой кишке свиней и многих травоядных животных важную роль играют такие общие со жвачными расщепители волокон целлюлозы и гемицеллюлозы, как Bacteroides succi — nogenes , Ruminococcus flavefaciens , Bacteroides ruminicola и другие (V . H . Varel , 1987).

Нормальная микрофлора организма и патогенные микроорганизмы

Облигатные макроорганизмы, которые приведены выше,- это в основном представители пепатогенной микрофлоры. Многие входящие в указанные группы виды являются даже призванными симбионтами макроорганизма (лактобактерии, бифлдобактерии), полезны для него. Определенные полезные функции выявлены у многих непатогенных видов клостридии, бактероидов, эубактернй, энтерококков, непатогенных кишечных палочек и т. д. Этих и других представителей микрофлоры тела называют «нормальной» микрофлорой. Но в физиологичный для макроорганизма микробиоценоз время от времени включаются и менее безвредные, условно-патогенные и весьма патогенные микроорганизмы. В дальнейшем эти патогены могут:

а) более или менее длительно существовать в организме
в составе всего комплекса его аутомикрофлоры; в таких случаях формируется носительство патогенных микробов, но количественно, все же, превалирует нормальная микрофлора;

б) быть вытеснены (быстро или несколько позже) из макроорганизма полезными симбиотическими представителя ми нормальной микрофлоры и элиминировать;

в) размножиться, так потеснив нормальную микрофлору, что при определенной степени колонизации макроорганизма способны вызвать соответствующее заболевание.

В кишечнике животных и человека, например, помимо определенных видов непатогенных клостридии в небольшом количестве обитает С. perfringens . В составе всей микрофлоры здорового животного количество С. perfringens не превышает 10-15 млд в 1 г. Однако при наличии некоторых условий, связанных, возможно, с нарушениями в нормальной микрофлоре, патогенный С. perfrtngens размножается на слизистой кишечника в огромном количестве (10 7 -10 9 и более), вызывая анаэробную инфекцию. В этом случае он даже вытесняет нормальную микрофлору и может быть выявлен в скарификате кате слизистой оболочки подвздошной кишки почти в чистой культуре. Подобным образом происходит развитие кишечной колиинфекции в тонком кишечнике у молодых животных, только там столь же бурно размножаются патогенные типы кишечной палочки; при холере поверхность слизистой кишечника колонизует холерный вибрион и т. д.

Биологическая роль (функциональное значение) нормальной микрофлоры

Патогенные и условно-патогенные микроорганизмы в те­чение жизни животного периодически контактируют и проникают в его организм, включаясь в состав общего комплекса микрофлоры. Если эти микроорганизмы не могут сразу вы­звать заболевание, то сосуществуют с другой микрофлорой тела какое-то время, но чаще бывают транзиторны. Так, для полости рта из патогенных и условно-патогенных факультативнотранзиторных микроорганизмов могут быть типичны Р, aeruginosa , С. perfringens , С. albicans , представители (ро­дов Esoherichia , Klebsiella , Proteus; для кишечника они же и еще более патогенные энтеробактерии, а также В. fragilis , С. tetani , С. sporogenes , Fusobacterium necrophorum, некото­рые представители рода Campylobacter , кишечные спирохеты (в т. ч. и патогенные, условно-патогенные) и многие другие. Для кожи и слизистых оболочек характерны S . aureus ; для респираторного тракта - он же и пневмококки и т. д.

Однако роль и значение полезной, симбиотической нормальной микрофлоры организма в том, что она нелегко допускает этих патогенных факультативно-транзиторных мик­роорганизмов в свою среду, в занятые уже ею пространст­венные экологические ниши. Вышеприведенные представители аутохтонной части нормальной микрофлоры первыми, еще при прохождении новорожденного через родовые пути мате­ри, заняли свое место на теле животного, то есть колонизовали его кожу, желудочно-кишечный и респираторный тракты, гениталии и другие области тела.

Механизмы, препятствующие колонизации (заселению) патогенной микрофлорой тела животного

Установлено, что самые большие популяции аутохтонной, облигатной части нормальной микрофлоры занимают в ки­шечнике характерные места, своего рода территории в микросреде кишечника (D . Savage , 1970). Мы изучали эту эко­логическую особенность бифидобактерии, бактероидов и установили, что они располагаются не равномерно в химусе по всей полости кишечной трубки, а расстилаются в полосах и слоях слизи (муцинов), следующих за всеми изгибами поверхности слизистой оболочки тонкого кишечника. Отчасти они примыкают к поверхности эпителиальных клеток слизи­стой. Поскольку бифидобактерии, бактероиды и другие коло­низуют эти субрегионы кишечной микросреды первыми, то многим патогенным микроорганизмам, позже проникающим в кишечник, они создают препятствия для приближения и фиксации (адгезии) на слизистой оболочке. И это один из ведущих факторов, поскольку установлено, что для реализа­ции своей патогенности (способности вызывать заболевание) любые патогенные микроорганизмы, в т. ч. и вызывающие кишечные инфекции, должны адгезировать к поверхности эпителиальных клеток кишечника, затем размножиться на ней, или, проникнув глубже, колонизовать эти же самые или близкие субрегионы, в районе которых уже сложились огромные по количеству популяции, например бифидобактерии. Получается, что в этом случае бифидофлора здорового ор­ганизма экранирует от некоторых патогенов слизистую обо­лочку кишечника, лимитируя доступ им к поверхности мем­бранэпителиоцитов и к рецепторам на эпителиальных клетках, на которых патогенным микробам необходимо зафикси­роваться.

Для многих представителей аутохтонной части нормальной микрофлоры известен еще ряд механизмов антагонизма по отношению к патогенной и условно-патогенной микрофлоре:

Продукция летучих жирных кислот с короткой цепью углеродных атомов (их образует строго анаэробная часть нормальной микрофлоры);

Образование свободных метаболитов желчи (лактобактерии, бифидобактерии, бактероиды, энтерококки и многие другие могут образовывать их, деконъюгируя соли желчных кислот);

Продукция лизоцима (свойственна лактобактериям, бифидобактериям);

Закисление среды, при продуцировании органических кислот;

Продукция колицинов и бактериоцинов (стрептококками, стафилококками, кишечной палочкой, нейссериями, пропяоновыми бактериями и др.);

Синтез различных антибиотикоподобных субстанций многими молочнокислыми микроорганизмами - Streptococcus lactis , L . acidophilus , L . fermentum , L . brevis , L . helveticus , L . pjantarum и т. д.;

Конкурирование непатогенных микроорганизмов, родственных патогенным видам, с патогенными видами за одни и те же рецепторы на клетках макроорганизма, к которым должны фиксироваться и их патогенные родственники;

Поглощение симбиотическими микробами из состава нормальной микрофлоры некоторых важных компонентов и элементов питательных ресурсов (например железо), необходимых для жизнедеятельности патогенных микробов.

Многие из этих механизмов и факторов, имеющихся у представителей микрофлоры тела животного, сочетаясь вместе и взаимодействуя, создают своеобразный барьерный эф­фект - препятствие для размножения условно-патогенных и патогенных микроорганизмов в определенных областях тела животного. Устойчивость макроорганизма к колонизации па­тогенами, создаваемая его обычной микрофлорой, получила название колонизационной резистентности. Эту резистентность к колонизации патогенной микрофлорой создает в основном комплекс полезных видов строго анаэробных микро­организмов, входящих в состав нормальной микрофлоры: разные представители родов - Bifidobacterium , Bacteroides , Eubacterium , Fusobacterium , Clostridium (непатогенные), а также факультативные анаэробы, например, род Lactobacil — lus , непатогенные Е. coli , S . faecalis , S . faecium и другие. Именно эта часть строго анаэробных представителей нормальной микрофлоры организма и доминирует по количеству популяции во всей кишечной микрофлоре в пределах 95- 99%. Нормальную микрофлору организма по этим причинам часто рассматривают как дополнительный фактор неспецифической резистентности организма здорового животного и человека.

Очень важно создать и соблюдать условия, при которых прямо или косвенно формируется заселение новорожденного нормальной микрофлорой. Ветеринарные специалисты, адми­нистративно-хозяйственные работники, животноводы должны правильно подготовить к родам матерей, провести роды, обеспечить молозивное имолочное вскармливание новорожденных. Надо бережно относиться к состоянию нормальной микрофлоры родовых путей.

Ветеринарным специалистам надо иметь в виду, что нормальная микрофлора родовых путей здоровых самок - это та физиологически обоснованная расплодка полезных микроорганизмов, которая обусловит правильное развитие всей микрофлоры тела будущего животного. Если роды неосложненные, то микрофлору не следует нарушать неоправданными лечебными, профилактическими и другими воздействиями; не вводить в родовые пути без достаточно веских показаний антисептические средства, обдуманно применять антибиотики.

Понятие о дисбактериозе

Бывают случаи, когда нарушается эволюционно сложившееся соотношение видов в нормальной микрофлоре или изменяются количественные соотношения между важнейшими группами микроорганизмов аутомикрофлоры организма, или меняется качество самих микробных представителей. В этом случае возникает дисбактериоз. А это открывает пути патогенным и условно-патогенным представителям аутомикрофлоры, которые могут внедриться или размножиться в организме и вызвать заболевания, дисфункции и т. д. Правильная, сложившаяся в процессе эволюции конструкция нормальной микрофлоры, ее эубиотическое состояние сдерживают в определенных рамках условно-патогенную часть аутомикрофлоры организма животного.

Морфофункциональная роль и метаболическая функция аутомикрофлоры организма

Аутомикрофлора воздействует на макроорганизм после его рождения так, что под ее влиянием созревают и формируются структура и функции ряда контактирующих с внешней средой органов. Таким путем приобретают свой морфофункциональный облик у взрослого животного желудочно- кишечный, респираторный, мочеполовой тракты и другие органы. Новая область биологических паук - гнотобиология, успешно развивающаяся со времени Л. Пастера, позволила очень отчетливо уяснить, что многие иммунобиологические особенности взрослого, нормально развитого организма животного формируются под влиянием аутомикрофлоры его тела. Безмикробные животные (гнотобиоты), полученные кеса­ревым сечением и затем содержащиеся длительное время в специальных стерильных гнотобиблогических изоляторах без всякого доступа к ним какой-либо жизнеспособной микрофлоры, имеют черты эмбрионального состояния слизистых оболочек, сообщающихся с внешней средой органов. Иммунобиологический статус их тоже сохраняет эмбриональные черты. Наблюдают гипоплазию лимфоидной ткани в первую очередь этих органов. У безмикробных животных меньше иммунокомпетентных клеточных элементов и иммуноглобулинов. Однако характерно, что потенциально организм такого гнотобиотического животного остается способным к развитию иммунобиологических возможностей, и лишь из-за отсутствия антигенных стимулов, идущих у обычных животных (начиная с рождения) от аутомикрофлоры, он не претерпел естественно происходящего развития, затрагивающего и всю иммунную систему в целом, и местные лимфоидные скопления слизистых оболочек таких органов, как кишечник, дыхательные пути, глаз, нос, ухо и т. д. Таким образом, в процессе индивидуального развития организма животного именно от его аутомикрофлоры следуют воздействия, в т. ч. антигенные сти­мулы, обуславливающие нормальное иммуноморфофункцио- нальное состояние обычного взрослого животного.

Микрофлора тела животного, в частности микрофлора желудочно-кишечного тракта, выполняет для организма важные метаболические функции: влияет на всасывание в тонком кишечнике, ферменты ее участвуют в деградации и обмене желчных кислот в кишечнике, образует необычные жирные кислоты в пищеварительном тракте. Под влиянием мик­рофлоры идет катаболизм некоторых пищеварительных фер­ментов макроорганизма в кишечнике; инактивируются, распадаются энтерокиназа, щелочная фосфатаза, в толстом кишечнике идет распад некоторых иммуноглобулинов пищеварительного тракта, выполнивших свою функцию и т. д. Микрофлора желудочно-кишечного тракта участвует в синтезе многих витаминов, необходимых для макроорганизма. Ее представители (например, ряд видов бактероидов, анаэробные стрептококки и др.) своими ферментами способны расщеплять клетчатку, пектиновые вещества, неусваиваемые животным организмом самостоятельно.

Некоторые методы контроля состояния микрофлоры тела животного

Контроль состояния микрофлоры у конкретных животных или их групп позволит своевременно корректировать нежелательные изменения важной аутохтонной части нормальной микрофлоры, исправить нарушения за счет искусст­венного введения полезных бактериальных представителей, например бифидобактерий или лактобактерий и т. д., и не допустить развития дисбактериоза в очень тяжелых формах. Такой контроль осуществим, если в нужный момент провести микробиологические исследования видового состава и количественных соотношений, в первую очередь в аутохтонной строго анаэробной микрофлоре некоторых областей тела животного. Для бактериологического исследования берут слизь со слизистых оболочек, содержимое органов или даже саму ткань органа.

Взятие материала. Для исследования толстого отдела ки­шечника могут быть использованы фекалии, собранные специально с помощью стерильных трубок - катетеров -- или другими способами в стерильную посуду. Иногда необходимо брать содержимое разных отделов желудочно-кишечного тракта или других органов. Это возможно в основном после убоя животных. Таким способом можно получить материал из тощей, 12-перстной кишок, желудка и др. Взятие отрезков кишечника вместе с их содержимым позволяет определять микрофлору как полости пищеварительного канала, так и стенки кишки путем приготовления соскобов, гомогенатов слизистой оболочки или стенки кишки. Взятие материала у животных после убоя также позволяет более полно и разносторонне определять нормальную микрофлору родовых верхних и средних дыхательных путей (трахеи, бронхов и т. д.).

Количественное исследование. Для определения количеств разных микроорганизмов взятый тем или иным способом материал от животного используют для приготовления 9-10 десятикратных разведений его (от 10 1 до 10 10) в стерильном физиологическом растворе или какой-нибудь (соответствующей виду микроба) стерильной жидкой питательной среде. Затем из каждого разведения, начиная от менее к более кон­центрированному, высевают на соответствующие питательные среды.

Так как исследуемыми пробами являются биологические субстраты со смешанной микрофлорой, надо так подбирать среды, чтобы каждая удовлетворяла ростовые потребности искомого микробного рода или вида и одновременно ингигбировала рост другой сопутствующей микрофлоры. Поэтому желательно, чтобы среды были селективными. По биологической роли и значимости в нормальной микрофлоре более важна ее аутохтонная строго анаэробная часть. Приемы ее выявления основаны на использовании соответствующих питательных сред и специальных методов анаэробного культивирования; большинство из перечисленных выше строго ана­эробных микроорганизмов можно культивировать на новой, обогащенной и универсальной питательной среде № 105 А. К. Балтрашевича с соавт. (1978). Эта среда сложного состава и поэтому может удовлетворять ростовым потребностям самой разной микрофлоры. Пропись этой среды можно найти в руководстве «Теоретические и практические основы гнотобиологии» (М.: Колос, 1983). Различные варианты этой среды (без добавления стерильной крови, с кровью, плотная, полужидкая и т. д.) позволяют выращивать очень многие облигатно анаэробные виды, в анаэростатах в газовой смеси без кислорода и вне анаэростатов, используя полужидкий вариант среды № 105 в пробирках.

Бифидобактерии тоже вырастают на этой среде, если в нее добавить 1 % лактозы. Однако из-за чрезвычайно большого количества не всегда доступных компонентов и сложного состава среды № 105 могут возникнуть трудности с ее изготовлением. Поэтому целесообразнее воспользоваться не менее эффективной при работе с бифидобактериями, но бо лее простой и доступной в изготовлении средой Блаурокка (Гончарова Г. И., 1968). Ее состав и приготовление: печеноч­ный отвар - 1000 мл, агар-агар - 0,75 г, пептон - 10 г, лактоза - 10 г, цистин - 0.1 г, соль поваренная (х/ч) - 5 г. В начале готовят печеночный отвар: 500 г свежей говяжей печени нарезают мелкими кусочками, заливают 1 л дис­тиллированной воды и кипятят 1 ч; отстаивают и фильтруют через ватно-марлевый фильтр, доливают дистиллированной водой до первоначального объема. В этот отвар добавляют расплавленный агар-агар, пептон и цистин; устанавливают рН = 8,1-8,2 с помощью 20%-кого едкого натра и кипятят 15 мин; дают отстояться 30 мин и фильтруют. Фильтрат до­водят дистиллированной водой до 1 л и добавляют в него лактозу. Затем разливают по пробиркам по 10-15 мл и стерилизуют текучим паром дробно (Блохина И. Н., Воронин Е. С. и др., 1990).’

В эти среды для придания им селективных свойств необходимо вводить соответствующие ингибирующие рост другой микрофлоры агенты. Для выявления бактероидов - это неомицин, канамицин; для спирально изогнутых бактерий (например, кишечных спирохет) - спектиномицин; для ана­эробных кокков рода Veillonella - ванкомицин. Для выделения из смешанных популяций микрофлоры бифидобактерий и других грамположительных анаэробов к средам добавляют азид натрия.

Для определения в материале количественного содержания лактобактерий целесообразно использовать солевой агар Рогоза. Селективные свойства ему придают добавлением уксусной кислоты, создающей в этой среде рН=5,4.

Неселективиой средой для лактобактерий может быть гидролизат молока с мелом: к литру пастеризованного, обезжиренного молока (рН -7,4-7,6), не содержащего примесей антибиотиков, добавляют 1 г порошка панкреатина и 5 мл хлороформа; встряхивают периодически; ставят на 72 ч в термостат при 40° С. Затем фильтруют, устанавливают рН = 7,0-7,2 и стерилизуют при 1 атм. 10 мин. Полученный гид­ролизат разводят водой 1: 2, добавляют 45 г простерилизованного прогреванием порошка мела и 1,5-2% агар-агара, нагревают до расплавления агара и стерилизуют повторно в автоклаве. Перед употреблением среду скашивают. По желанию в среду можно ввести какой-либо селекционирующий агент.

Выявить и определить уровень стафилококков можно на довольно простой питательной среде - глюкозном солевом мясопептонном агаре (МПА с 10% поваренной соли и 1-2% глюкозы); энтеробактерий - на среде Эндо и других средах, прописи которых можно найти в любых руководствах по мик­робиологии; дрожжей и грибов - на среде Сабуро. Актиномицеты целесообразно выявлять на среде СР-1 Красильни- кова, состоящей из 0,5 калия фосфорнокислого двузамещенного. 0,5 г магния сернокислого, 0,5 г натрия хлористого, 1,0 г калия азотнокислого, 0,01 г железа сернокислого, 2 г кальция углекислого, 20 г крахмала, 15-20 г агар-агара и до 1 л дистиллированной воды. Все ингредиенты растворить, смешать, нагреть до расплавления агара, установить рН = 7, профильтровать, разлить по пробиркам, стерилизовать в автоклаве при 0,5 атм. 15 мин, перед посевами скашивать.

Для выявления энтероккоков желательна селективная среда (агар-М) в упрощенном варианте следующего состава: к 1 л расплавленного стерильного МПА добавить 4 г фосфорнокислого двузамещенного, растворенного в мини мальном количестве стерильной дистиллированной воды 400 мг также растворенного аэида натрия; 2 г растворенной глюкозы (или готового стерильного раствора 40%-ной глюкозы - 5 мл). Все перемещать. После остывания смеси примерно До 50° С добавить в нее растворённой в стерильной дистиллированной воде ТТХ (2,3,5-трифенилтетразолий хло рид) - 100 мг. Перемешать, среду не стерилйзовать, тут же разлить в стерильные чашки Петри или пробирки. Энтеро кокки растут на этой среде в виде небольших, серо-белого цвета колоний. Но чаще из-за примеси ТТХ колонии эйтерококков, приобретают темно-вишневый цвет (вся колония или,ее центр).

Споровые аэробные палочки (В. subtilis и др.) легко выявляют после прогревания исследуемого материала при 80° С в течение 30 мин. Затем высевают прогретой материал ни МПА или 1МПБ и после обычной инкубации (37° С при до ступе кислорода) наличие этих бацилл устанавливают по росту их на поверхности среды в виде пленки (на МПБ).

Установить количество коринебактерий в материалах из различных областей тела животного можно с помощью среды Бучина (выпускается в готовом виде Дагестанским институтом сухих питательных сред). Её можно обогатить до бавлением 5% стерильной крови. Нейссерии выявляют на среде Бергеа с ристомицином: к 1 л расплавленного агара Хоттйнгера (менее желателен МПА) добавить 1 % мальтозы, стерильно растворенной в дистиллированной воде (можно 10 г мальтозы растворить в минимальном количестве воды и прокипятить на водяной бане), 15 мл 2%-ного раствора водногр голубого (анилиновый голубой водорастворимый), раствор рйстомицина из; расчета 6,25 ед. на 1 мл среды. Сме шать, не стерилизовать, разлить в стерильные чашки Петри или пробирки. Грамотрицательные кокки рода Neisseria растут в виде мелких и средних колоний голубого или синего цвета. Гемофильные бактерии можно выделять на среде, представляющей собой шоколадный агар (из лошадиной крови) с бацитрацином в качестве селективного агента. .

Методы выявления условно-патогенных микроорганизмов (синегнойной палочки, протея, клебсиелл и др.). Хорошо известны или можно найти в большинстве бактериологических руководств.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Основной

Балтрашевич А. К. и др. Плотная среда без крови и ее полужидкий и жидкий варианты для культивирования бактероидов / Научно-Исследовательская лаборатория экспериментально-биологических моделей АМН СССР. М. 1978 7 с. Библиогр. 7 назв. Деп. во ВНИИМИ 7.10.78, № Д. 1823.

Гончарова Г. И. К методике культивировния В. bifidum // Лабора­торное дело. 1968. № 2. С. 100-1 D 2.

Методические рекомендации по выделению и идентификации условно-патогеииых энтеробактерий и сальмонелл при острых кишечных забо- v леваниях молодняка сельскохозяйственных животных / И. Н. Блохина Е, С. Воронин и др. хМ: МВА, 1990. 32 с.

Петровская В. Г., Марко О. П. Микрофлора человека в норме и патологии. М.: Медицина, 1976. 221 с.

Чахава О. В. и др. Микробиологические и иммунологические основы гнотобиологии. М.: Медицина, 1982. 159 с.

Knothe Н. u. a. Vaginales Keimspektrum//FAC: Fortschr. antimlkrob, u. antirieoplastischen Chemotherapie. 1987. Bd. 6-2. S. 233-236.

Koopman Y. P. et al. Associtidn of germ-free rats with different rnicrofloras // Zeitschrift fur Versuchstierkunde. 1984. Bd. 26, N 2. S. 49-55.

Varel V. H. Activity of fiber-degrading microorganisms in the pig large intestine//J. Anim. Science. 1987. V. 65, N 2. P. 488-496.

Дополнительный

Boyd M. E. Postoperative gynecologic infections//Can. J. Surg. 1987.

V. 30,’N 1. P. 7-9.

Masfari A. N., Duerden B, L, Kirighorn G. R. Quantitative studies of vaginal bacteria//Genitourin. Med. 1986. V. 62, N 4. P. 256-263.

Methods for quantitative and qualitative evaluation of vaginal micro-fiora during menstruation / A. B. Onderdonk, G. A. Zamarchi, Y. A. Walsh et al. //Appl. and Environ. Microbiology. 1936. V. 51, N 2. P. 333- 339.

Miller J. M., Pastorek J. G. The microbiology of premature rupture of the membrans//Clin. Obstet. and Gyriecol. 1986. V. 29, N 4. P. 739-757.

Нормальная микрофлора человека и животного – необходимое условие сохранения здоровья макроорганизма. Нарушение микробных биоценозов в разных органах и системах организма ведет к развитию патологических процессов, снижению активности защитных сил организма, развитию дисбактериоза. Если новорожденного выращивать в стерильных условиях, кормить стерильной пищей, т.е. лишить его нормальной микрофлоры, он будет плохо развиваться, отстанет в росте и может погибнуть.

Многие из микроорганизмов, обитающих в организме человека или животного, представляют нормальную микрофлору и относятся по патогенности к непатогенным или условно – патогенным. Обитающие в теле человека или животного представители сапрофитной и условно – патогенной микрофлоры в прошлом изучались меньше, так как эту микрофлору считали безвредной для макроорганизма и основное внимание было направлено на представителей патогенной микрофлоры.

В настоящее время значение непатогенных микробов в возникновении и развитии заболеваний у людей возросло до проблемы, которую трудно переоценить.

Сапрофитные и условно – патогенные микробы, находящиеся в организме, или проникшие из окружающей сред, при определенных условиях на фоне инфекции, авитаминоза, постоянного физического и умственного переутомления, переохлаждения, стрессовых ситуаций, радиоактивного облучения, белкового истощения и других факторов могут вызывать как у людей, так и у животных могут вызвать инфекционные заболевания, которые нередко оканчиваются летальным исходом. Резидентная микрофлора полости рта может играть существенную роль в заболеваниях инфекционного происхождения (например, при агранулоцитозе), при этом обнаруживаются бактероиды, фузиформные бактерии, стрептококки, Ps.aeruginosa, C.albicans, St.aueus, E.cjli.

Такие микроорганизмы, как E.coli, Kl.pneumoniae, Pr.vulgaris, Cl.perfringens, St.aureus, входящие в состав нормальной микрофлоры кишечника могут вызвать развитие воспалительных процессов, а нередко – и абсцессы. Представители резидентной микрофлоры могут стать возбудителями бактериемии и сепсиса. Сапрофитные и условно – патогенные микроорганизмы могут обусловить развитие бактериального шока, который развивается в результате одновременного поступления в кровь значительного количества микробных особей и их токсинов, или даже только микробных токсинов. Бактериальный шок возникает после внезапно наступившей массовой бактериемии вследствие хронической очаговой инфекции, преодолевшей защитные барьеры, хирургического вмешательства на фоне септического очага. Очень часто бактериальный шок развивается при манипуляциях мочеполовой системы в период инфекции, при переливании загрязненной микробами крови, при продолжительных внутривенных вливаниях медикаментов и питательных веществ, с которыми в кровь попадают и бактерии. Наиболее частыми возбудителями бактериального шока являются E.coli, Ps.aeruginosa, Proteus vulgaris, St.epidermidis, St.aureus, Kl. Pneumoniae, представители рода Bacteroides, Cl.perfringens, гемолитический стрептококк, менингококки, пневмококки.



Тяжелее всего бактериальный шок протекает при инфекции, вызванной псевдомонасами, протеями, эшерихиями. При ослаблении организма (переохлаждение, травмы, истощение и пр.) микроорганизмы, являющиеся постоянными обитателями верхних дыхательных путей, могут вызывать различные заболевания (бронхиты, пневмонию и др.), поражая при этом и нижние отделы дыхательных путей. Резидентная микрофлора мочеполовых органов, в состав которой входят St.aureus, St.epidermidis, E.coli, Klebsiella sp., Cl.perfringens, кандиды, дифтероиды, вибрионы, бактероиды, микоплазмы и другие микроорганизмы, могут вызвать развитие вульвитов, уретритов, заболевание матки, предстательной железы, придатков. В последние десятилетия в стационарах лечебных учреждений значительно увеличилось число больных, у которых представители резидентной микрофлоры, условно – патогенные микроорганизм нередко взывают тяжелые гнойно – воспалительные процессы. За последние годы значительно увеличилось число больных с гнойно – воспалительными процессами в челюстно – лицевой области, особенно у лиц со сниженной активностью факторов естественной защиты.

Среди энтеропатогенных серотипов кишечной палочки выявлены возбудители желудочно – кишечных заболеваний у молодняка крупного рогатого скота.

Дрожжеподобные грибы рода Candida, широко распространены в природе и являются постоянными обитателями наружных покровов, слизистых оболочек и желудочно – кишечного тракта как людей, так и животных. Установлена этиологическая роль Candida albikans, C.tropicalis в возникновении абортов у коров, крольчих, кошек, мышей, морских свинок. При исследовании гистологических препаратов пораженных органов (почек, селезенки, легких, печени) обнаруживаются не только дрожжеподобные, но и мицелиальные формы гриба, прорастающие в ткани. Это свидетельствует об активном развитии гриба в организме. Патогенные спирохеты у взрослых свиней вызывают лептоспироз, а патогенные кишечные палочки у поросят вызывают коли – бактериоз. Нередко инфекции у животных вызывают вирусы. Люди, соприкасаясь непосредственно с больными животными или с различными субстратами, обсемененными микробами, выделяемыми от этих животных, инфицируются и заболевают.

Опаснейшими антропозоонозными инфекциями являются сибирская язва, сап, бруцеллез, туберкулез, чума, трипаносомоз, бешенство и многие другие.

Исследования, проводимые учеными на всех континентах на протяжении многих десятилетий, позволили понять роль микроорганизмов не только в круговороте веществ, но и в возникновении инфекционных заболеваний у людей, животных и растительных организмов. На протяжении миллионов лет макро- и микроорганизмы взаимно приспосабливались и стали необходимы друг другу. Микробы – нормальные обитатели животного или растительного организма стали неотъемлемыми спутниками макроорганизма и играют значительную роль в их жизни.

Pseudomonas aeruginosa – грамотрицательная бактерия в форме палочки, которая является облигаторным аэробом. Размеры этого микроорганизма в толщину достигают до 0,8 мкм, а в длину до 3 мкм. Самый подвижный патогенный микроорганизм, который обитает в водной среде. Способен длительное время находиться и успешно размножаться во влажной атмосфере и в воде. Температура, которая подходит для развития этого микроорганизма, 37 градусов. Для человека этот микроорганизм условно патогенный, так как он никогда не поражает здоровые ткани.

Гепатит Е – впервые был изучен и описан в 1983. Это микроорганизм в форме сферы со спиралью РНК. Гепатит Е передается в основном через грязную воду, фекально-оральным путем. Заболевание гепатитом Е носит сезонный характер и особенно обостряется в осенне-зимний период.

Aeromonas spp. – относят к семейству грамотрицательных бактерий, которые имеют форму палочки, способны развиваться как в среде без кислорода, так и в кислородной среде. При заражении этим патогенным микроорганизмом возникают острые инфекции двух видов: холероподобная, которая сопровождается водянистой диареей; инфекция, похожая на дизентерию, которая сопровождается кровяным стулом. Заражение происходит через загрязненную воду, но иногда передается через пищу. Человек может заразиться только тогда, когда у него имеются открытые раны.

Shigella или шигеллы – аэробные грамотрицательные неподвижные бактерии, выражены в виде палочки. Могут вызывать у человека кишечные инфекционные заболевания. Обиходное название это болезни «дизентерия». Передается через загрязнённую воду, грязную пищу и грязные бытовые предметы.

Vibrio cholerae, в переводе – холерный вибрион. Грамотрицательная палочка, небольшая по размерам, в форме запятой. Отлично может развиваться при температуре от 30 до 40 градусов по Цельсию. Вызывают болезнь под названием холера. Заразиться можно очень легко, через обычную питьевую воду, в которую попала эта бактерия. При купании в загрязненных водоемах и заглатывании этой воды, также велика вероятность заражения

Yersinia enterocolitica – иерсинии, грамотрицательные бактерии, которые не образуют спор. Являются анаэробами. Устойчивы к воздействиям внешней среды и могут долго сохраняться. Заражение этой бактерией вызывает у людей острое заболевание под названием иерсиниоз. Повреждают ЖКТ и приводят к интоксикации организма, как результат может поразиться опорно-двигательный аппарат или печень.

Энтеровирусы – небольшие вирусы в форме двадцатигранника, которые не имеют мембранной оболочки, содержат одну спираль РНК, длительно живут в сточной и хлорированной воде. Самым тяжелым заболеванием, которое энтеровирусы способны вызвать у человека, является полиомиелит.

Salmonella или сальмонелла, это грамотрицательные подвижные аэробы. Вызывают инфекционную болезнь, под названием сальмонеллез.

Аденовирусы – сегодня насчитывается около 100 типов таких вирусов, 49 которых могут вызвать заболевания у человека. Поражают преимущественно органы дыхания, глаз и лимфатических узлов. Реже поражают кишечник и мочевой пузырь.

44. Фенотипическая и генотипическая изменчивость прокариот. Значение мутаций. Перспективы генной инженерии .

Общие понятия.

Наследственность – способность живых организмов сохранять определенные признаки на протяжении многих поколений. Изменчивость – приобретение новых признаков, отличающих их от других поколений под влиянием факторов внешней среды. Наука, изучающая наследственность и изменчивость, называется генетикой.

Фенотип – общий комплекс морфологических и физиологических свойств каждого индивидуума, и служит внешним проявлением генотипа.

Генотип общая сумма генов, которыми обладает клетка. Он определяет целую группу свойств организма, специфичных для данного вида.

В открытых полостях организма, органах, системах: коже, системе органов дыхания, пищеварения, размножения, выде­ления образуются различные постоянные или временные мик­робные ассоциации, которые играют большую роль в биосин­тезе биологически активных веществ, метаболизме, иммуни­тете и других процессах и явлениях, значение которых дока­зывает наука о безмикробных животных - гнотобиология.

Уместно вспомнить, что жизнедеятельность микробов опре­деляет наличие необходимых питательных веществ, влажно­сти, концентрации водородных ионов, солей. Названные ус­ловия обеспечивают численность микробов, предрасположен­ность к восприимчивости патогенной микрофлоры.

Проанализируйте роль облигатной микрофлоры в обмене веществ, какие изменения могут произойти с возрастом, при смене кормов, в каких органах и какая микрофлора осущест­вляют биосинтез физиологически активных веществ: амино­кислот, белков, витаминов, жиров, углеводов, ферментов; важно помнить, что различные микробы образовали с макро­организмами определенные биоценозы, нарушение которых приводит к дисбактериозам, и, как следствие, к нарушению физиологии, то есть к болезни и даже гибели животных. Что может быть причиной дисбактериоза?

31.Микрофлора воды. Санитарные показатели доброка­чественной воды разных водоемов (общее микробное число, коли-титр, коли-индекс). Самоочищение воды от микрофло­ры.

32.Микрофлора системы органов пищеварения жвачных животных, ее значение для организма.

33.Биосинтез физиологически активных веществ микро­флорой (аминокислот, ферментов, антибиотиков и др.) в ор­ганизме животных.

34.Микробиология почвы. Микробные ценозы разных почв. Сроки сохранения жизнеспособности возбудителей ин­фекционных болезней в почве (примеры).

35.Микрофлора ризосферы (корневая, прикорневая). Ко­личественный и качественный состав. Методы регулирования микробиологических процессов при хранении корне- и клубне­плодов.

36.Микрофлора воды. Микробиологические процессы в разных зонах воды. Санитарные показатели доброкачествен­ной воды (общее микробное число, коли-титр, коли-индекс).

37.Микрофлора воды. Количественный и качественный состав микрофлоры воды разных водоемов. Сроки сохранения жизнеспособности возбудителей инфекционных болезней в воде. Самоочищение водоемов от микрофлоры.

38.Микрофлора атмосферы. Распространение микробов в ней. Воздух -фактор передачи возбудителей заразных болез­ней. Методы санитарной оценки и очистки воздуха.

39. Нормальная микрофлора кожи, системы, органов дыха­ния и ее влияние на физиологическое состояние хозяина.



40.Нормальная микрофлора системы органов пищеваре­ния и ее роль у плотоядных, всеядных, травоядных живот­ных.

41.Роль микробов - продуцентов ферментов антибиотиков, молочной кислоты, витаминов и других веществ в организме животных.

Глава VI. Превращение микроорганизмами соединений углерода

Литература: 1, с. 125-140.

Микроорганизмы играют существенную роль в природе, принимая участие в биогенном круговороте элементов на Земле. Углерод является одним из важнейших элементов ор­ганической жизни. Необходимо вспомнить, что зеленые рас­тения с помощью солнечной энергии синтезируют из диокси­да углерода (СО 2) органические вещества, которые после от­мирания растительных организмов подвергаются разложению микроорганизмами и СО 2 снова выделяется в атмосферу. Под влиянием ферментов микробов сложные органические вещест­ва в аэробных условиях в результате процессов дыхания пре­вращаются в диоксид углерода и воду, а в анаэробных усло­виях при процессах брожения они преобразуются в различ­ные органические кислоты и спирты, затем в СО 2 и Н 2 О.

Необходимо знать, какому ученому принадлежит заслуга открытия физиологической сущности процессов брожения. Зная процессы брожения, возбудителей, их физиологические особенности, химизм, можно правильно организовать техно­логию получения и хранения продуктов питания, разнообраз­ных органических соединений для промышленности, правильно организовать утилизацию отходов различных отраслей хо­зяйства.

Изучите гомоферментативное и гетероферментативное молочно-кислое брожения, химизм этих процессов, морфологи­ческую и физиологическую характеристику возбудителей, ис­пользование их для приготовления кисло-молочных продук­тов, консервирования кормов, овощей и плодов.

Ознакомьтесь с возбудителями, химизмом и значением спиртового брожения и процессом окисления этилового спир­та в уксусную кислоту.

Необходимо усвоить значение в природе и сельском хозяй­стве масляно-кислого брожения, основные свойства его возбу­дителей, химизм процесса. Специалист сельского хозяйства должен хорошо знать аэробное и анаэробное разложения клетчатки и методы, регулирующие эти процессы в почве и при хранении навоза.

Изучите микроорганизмы, способные к окислению углево­дородов и практическое их применение для производства мик­робного белка и защиты окружающей среды от загрязнения.

Вопросы для самопроверки и выполнения контрольной работы

42.Превращение углеродсодержащих веществ в природе. Синтез органических веществ. Превращение углеводов в ана­эробных условиях. Брожения. Роль в природе и практическое использование.

43.Превращение углеродсодержащих веществ в природе. Синтез органических веществ. Превращение углеводов в аэ­робных условиях. Роль в природе и практическое использо­вание.

44.Разложение клетчатки. Химизм процесса. Анаэробные, аэробные микробы. Значение в организме животных, роль в природе.

45.Молочнокислое брожение. Химизм. Гомоферментативное, гетероферментативное брожения, их возбудители, морфо­логические особенности. Значение.

46.Молочнокислое, пропионово-кислое брожения. Возбу­дители, их морфологические, физиологические особенности. Приготовление и использование АБК (ацидофильной бульон­ной культуры), ПАБК (пропионово-ацидофильной бульонной культуры). Роль микрофлоры в биосинтезе витаминов.

47.Маслянокислое и ацетонобутиловое брожения. Химизм. Морфологические, физиологические особенности возбудите­лей. Роль в природе, кормопроизводстве. Значение работ Л. Пастера.

48.Спиртовое брожение. Химизм. Морфологические, фи­зиологические особенности возбудителей. Значение в народ­ном хозяйстве Творческий вклад ученых в раскрытие химиз­ма процесса.

49.Получение микробиологическим путем уксусной, лимон­ной, щавелевой и других кислот. Морфологические, физиоло­гические особенности возбудителей. Использование процессов в народном хозяйстве.

50.Получение кисломолочных продуктов. Характеристика возбудителей Условия, активизирующие молочнокислое бро­жение. Использование в быту и производстве.

Глава VII. Превращение микроорганизмами соединений азота,

Понравилась статья? Поделиться с друзьями: