Природные источники углеводородного сырья краткое сообщение. Природные источники углеводородов: газ, нефть, кокс

Цель. Обобщить знания о природных источниках органических соединений и их переработке; показать успехи и перспективы развития нефтехимии и коксохимии, их роль в техническом прогрессе страны; углубить знания из курса экономической географии о газовой отрасли промышленности, современных направлениях переработки газа, сырьевой и энергетической проблемах; развивать самостоятельность в работе с учебником, справочной и научно-популярной литературой.

ПЛАН

Природные источники углеводородов. Природный газ. Попутные нефтяные газы.
Нефть и нефтепродукты, их применение.
Термический и каталитический крекинг.
Коксохимическое производство и проблема получения жидкого топлива.
Из истории развития ОАО «Роснефть – КНОС».
Производственные мощности завода. Выпускаемая продукция.
Связь с химлабораторией.
Охрана окружающей среды на заводе.
Планы завода на будущее.

Природные источники углеводородов.
Природный газ. Попутные нефтяные газы

До Великой Отечественной войны промышленные запасы природного газа были известны в Прикарпатье, на Кавказе, в Заволжье и на Севере (Коми АССР). Изучение запасов природного газа было связано только с разведкой нефти. Промышленные запасы природного газа в 1940 г. составляли 15 млрд м 3 . Затем месторождения газа были обнаружены на Северном Кавказе, в Закавказье, на Украине, в Поволжье, Средней Азии, Западной Сибири и на Дальнем Востоке. На
1 января 1976 г. разведанные запасы природного газа составляли 25,8 трлн м 3 , из них в европейской части СССР – 4,2 трлн м 3 (16,3%), на Востоке – 21,6 трлн м 3 (83,7%), в том числе
18,2 трлн м 3 (70,5%) – в Сибири и на Дальнем Востоке, 3,4 трлн м 3 (13,2%) – в Средней Азии и в Казахстане. На 1 января 1980 г. потенциальные запасы природного газа составляли 80–85 трлн м 3 , разведанные – 34,3 трлн м 3 . Причем запасы увеличились главным образом благодаря открытию месторождений в восточной части страны – разведанные запасы там были на уровне около
30,1 трлн м 3 , что составляло 87,8% от общесоюзных.
На сегодняшний день Россия обладает 35% от мировых запасов природного газа, что составляет более 48 трлн м 3 . Основные районы залегания природного газа по России и странам СНГ (месторождения):

Западно-сибирская нефтегазоносная провинция:
Уренгойское, Ямбургское, Заполярное, Медвежье, Надымское, Тазовское – Ямало-Ненецкий АО;
Похромское, Игримское – Березовская газоносная область;
Мельджинское, Лугинецкое, Усть-Сильгинское – Васюганская газоносная область.
Волго-Уральская нефтегазоносная провинция:
наиболее значительное – Вуктылское, в Тимано-Печорской нефтегазоносной области.
Средняя Азия и Казахстан:
наиболее значительное в Средней Азии – Газлинское, в Ферганской долине;
Кызылкумское, Байрам-Алийское, Дарвазинское, Ачакское, Шатлыкское.
Северный Кавказ и Закавказье:
Карадаг, Дуванный – Азербайджан;
Дагестанские Огни – Дагестан;
Северо-Ставропольское, Пелачиадинское – Ставропольский край;
Ленинградское, Майкопское, Старо-Минское, Березанское – Краснодарский край.

Также месторождения природного газа известны на Украине, Сахалине и Дальнем Востоке.
По запасам природного газа выделяется Западная Сибирь (Уренгойское, Ямбургское, Заполярное, Медвежье). Промышленные запасы здесь достигают 14 трлн м 3 . Особо важное значение сейчас приобретают ямальские газоконденсатные месторождения (Бованенковское, Крузенштернское, Харасавейское и др.). На их основе идет осуществление проекта «Ямал – Европа».
Добыча природного газа отличается высокой концентрацией и ориентирована на районы с наиболее крупными и выгодными по эксплуатации месторождениями. Только пять месторождений – Уренгойское, Ямбургское, Заполярное, Медвежье и Оренбургское – содержат 1/2 всех промышленных запасов России. Запасы Медвежьего оцениваются в 1,5 трлн м 3 , а Уренгойского – в 5 трлн м 3 .
Следующая особенность заключается в динамичности размещения мест добычи природного газа, что объясняется быстрым расширением границ выявленных ресурсов, а также сравнительной легкостью и дешевизной вовлечения их в разработку. За короткий срок главные центры по добыче природного газа переместились из Поволжья на Украину, Северный Кавказ. Дальнейшие территориальные сдвиги вызваны освоением месторождений Западной Сибири, Средней Азии, Урала и Севера.

После распада СССР в России происходило падение объема добычи природного газа. Спад наблюдался в основном в Северном экономическом районе (8 млрд м 3 в 1990 г. и 4 млрд м 3 в 1994 г.), на Урале (43 млрд м 3 и 35 млрд м 3), в Западно-Сибирском экономическом районе (576 и
555 млрд м 3) и в Северо-Кавказском (6 и 4 млрд м 3). Добыча природного газа оставалась на прежнем уровне в Поволжском (6 млрд м 3) и в Дальневосточном экономических районах.
В конце 1994 г. наблюдалась тенденция к росту уровня добычи.
Из республик бывшего СССР Российская Федерация дает больше всего газа, на втором месте – Туркмения (более 1/10), далее идут Узбекистан и Украина.
Особое значение приобретает добыча природного газа на шельфе Мирового океана. В 1987 г. на морских месторождениях было добыто 12,2 млрд м 3 , или около 2% газа, добытого в стране. Добыча попутного газа в том же году составила 41,9 млрд м 3 . Для многих районов одним из резервов газообразного топлива служит газификация угля и сланцев. Подземная газификация угля осуществляется в Донбассе (Лисичанск), Кузбассе (Киселевск) и Подмосковном бассейне (Тула).
Природный газ был и остается важным продуктом экспорта в российской внешней торговле.
Основные центры переработки природного газа расположены на Урале (Оренбург, Шкапово, Альметьевск), в Западной Сибири (Нижневартовск, Сургут), в Поволжье (Саратов), на Северном Кавказе (Грозный) и в других газоносных провинциях. Можно отметить, что комбинаты газопереработки тяготеют к источникам сырья – месторождениям и крупным газопроводам.
Важнейшее использование природного газа – в качестве топлива. Последнее время идет тенденция к увеличению доли природного газа в топливном балансе страны.

Наиболее ценится природный газ с высоким содержанием метана – это ставропольский (97,8% СН 4), саратовский (93,4%), уренгойский (95,16%).
Запасы природного газа на нашей планете очень велики (примерно 1015 м 3). У нас в России известно более 200 месторождений, они находятся в Западной Сибири, в Волго-Уральском бассейне, на Северном Кавказе. По запасам природного газа первое место в мире принадлежит России.
Природный газ является ценнейшим видом топлива. При сгорании газа выделяется много теплоты, поэтому он служит энергетически эффективным и дешевым топливом в котельных установках, доменных, мартеновских и стекловаренных печах. Использование на производстве природного газа дает возможность значительно повысить производительность труда.
Природный газ – источник сырья для химической отрасли промышленности: получение ацетилена, этилена, водорода, сажи, различных пластмасс, уксусной кислоты, красителей, медикаментов и других продуктов.

Попутный нефтяной газ – это газ, существующий вместе с нефтью, он растворен в нефти и находится над ней, образуя «газовую шапку», под давлением. На выходе из скважины давление падает, и попутный газ отделяется от нефти. Этот газ в прошлые времена не использовался, а просто сжигался. В настоящее время его улавливают и используют как топливо и ценное химическое сырье. Возможности использования попутных газов даже шире, чем природного газа, т.к. состав их богаче. В попутных газах содержится меньше метана, чем в природном газе, но в них значительно больше гомологов метана. Чтобы использовать попутный газ более рационально, его разделяют на смеси более узкого состава. После разделения получают газовый бензин, пропан и бутан, сухой газ. Извлекают и индивидуальные углеводороды – этан, пропан, бутан и другие. Дегидрированием их получают непредельные углеводороды – этилен, пропилен, бутилен и др.

Нефть и нефтепродукты, их применение

Нефть – это маслянистая жидкость с резким запахом. Она встречается во многих местах земного шара, пропитывая пористые горные породы на различной глубине.
По мнению большинства ученых, нефть представляет собой геохимически измененные остатки некогда населявших земной шар растений и животных. Эта теория органического происхождения нефти подкрепляется тем, что в нефти содержатся некоторые азотистые вещества – продукты распада веществ, присутствующих в тканях растений. Есть и теории о неорганическом происхождении нефти: образовании ее в результате действия воды в толщах земного шара на раскаленные карбиды металлов (соединения металлов с углеродом) с последующим изменением получающихся углеводородов под влиянием высокой температуры, высокого давления, воздействия металлов, воздуха, водорода и др.
При добыче из нефтеносных пластов, залегающих в земной коре иногда на глубине нескольких километров, нефть либо выходит на поверхность под давлением находящихся на нем газов, либо выкачивается насосами.

Нефтяная отрасль промышленности сегодня – это крупный народно-хозяйственный комплекс, который живет и развивается по своим законам. Что значит нефть сегодня для народного хозяйства страны? Нефть – это сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.
Нефть – наше национальное богатство, источник могущества страны, фундамент ее экономики. Нефтяной комплекс России включает 148 тыс. нефтяных скважин, 48,3 тыс. км магистральных нефтепроводов, 28 нефтеперерабатывающих заводов общей мощностью более 300 млн т/год нефти, а также большое количество других производственных объектов.
На предприятиях нефтяной отрасли промышленности и обслуживающих ее отраслей занято около 900 тыс. работников, в том числе в сфере науки и научного обслуживания – около 20 тыс. человек.
За последние десятилетия в структуре топливной отрасли промышленности произошли коренные изменения, связанные с уменьшением доли угольной отрасли промышленности и ростом отраслей по добыче и переработке нефти и газа. Если в 1940 г. они составляли 20,5%, то в 1984 г. – 75,3% от суммарной добычи минерального топлива. Теперь на первый план выдвигается природный газ и уголь открытой добычи. Потребление нефти для энергетических целей будет сокращено, напротив, расширится ее использование в качестве химического сырья. В настоящее время в структуре топливно-энергетического баланса на нефть и газ приходится 74%, при этом доля нефти сокращается, а доля газа растет и составляет примерно 41%. Доля угля 20%, оставшиеся 6% приходятся на электроэнергию.
Переработку нефти впервые начали братья Дубинины на Кавказе. Первичная переработка нефти заключается в ее перегонке. Перегонку производят на нефтеперерабатывающих заводах после отделения нефтяных газов.

Из нефти выделяют разнообразные продукты, имеющие большое практическое значение. Сначала из нее удаляют растворенные газообразные углеводороды (преимущественно метан). После отгонки летучих углеводородов нефть нагревают. Первыми переходят в парообразное состояние и отгоняются углеводороды с небольшим числом атомов углерода в молекуле, имеющие относительно низкую температуру кипения. С повышением температуры смеси перегоняются углеводороды с более высокой температурой кипения. Таким образом можно собрать отдельные смеси (фракции) нефти. Чаще всего при такой перегонке получают четыре летучие фракции, которые затем подвергаются дальнейшему разделению.
Основные фракции нефти следующие.
Газолиновая фракция , собираемая от 40 до 200 °С, содержит углеводороды от С 5 Н 12 до С 11 Н 24 . При дальнейшей перегонке выделенной фракции получают газолин (t кип = 40–70 °С), бензин
(t кип = 70–120 °С) – авиационный, автомобильный и т.д.
Лигроиновая фракция , собираемая в пределах от 150 до 250 °С, содержит углеводороды от С 8 Н 18 до С 14 Н 30 . Лигроин применяется как горючее для тракторов. Большие количества лигроина перерабатывают в бензин.
Керосиновая фракция включает углеводороды от С 12 Н 26 до С 18 Н 38 с температурой кипения от 180 до 300 °С. Керосин после очистки используется в качестве горючего для тракторов, реактивных самолетов и ракет.
Газойлевая фракция (t кип > 275 °С), по-другому называется дизельным топливом .
Остаток после перегонки нефти – мазут – содержит углеводороды с большим числом атомов углерода (до многих десятков) в молекуле. Мазут также разделяют на фракции перегонкой под уменьшенным давлением, чтобы избежать разложения. В результате получают соляровые масла (дизельное топливо), смазочные масла (автотракторные, авиационные, индустриальные и др.), вазелин (технический вазелин применяется для смазки металлических изделий с целью предохранения их от коррозии, очищенный вазелин используется как основа для косметических средств и в медицине). Из некоторых сортов нефти получают парафин (для производства спичек, свечей и др.). После отгонки летучих компонентов из мазута остается гудрон . Его широко применяют в дорожном строительстве. Кроме переработки на смазочные масла мазут также используют в качестве жидкого топлива в котельных установках. Бензина, получаемого при перегонке нефти, не хватает для покрытия всех нужд. В лучшем случае из нефти удается получить до 20% бензина, остальное – высококипящие продукты. В связи с этим перед химией стала задача найти способы получения бензина в большом количестве. Удобный путь был найден с помощью созданной А.М.Бутлеровым теории строения органических соединений. Высококипящие продукты разгонки нефти непригодны для употребления в качестве моторного топлива. Их высокая температура кипения обусловлена тем, что молекулы таких углеводородов представляют собой слишком длинные цепи. Если расщепить крупные молекулы, содержащие до 18 углеродных атомов, получаются низкокипящие продукты типа бензина. Этим путем пошел русский инженер В.Г.Шухов, который в 1891 г. разработал метод расщепления сложных углеводородов, названный впоследствии крекингом (что означает расщепление).

Коренным усовершенствованием крекинга явилось внедрение в практику процесса каталитического крекинга. Этот процесс был впервые осуществлен в 1918 г. Н.Д.Зелинским. Каталитический крекинг позволил получать в крупных масштабах авиационный бензин. На установках каталитического крекинга при температуре 450 °С под действием катализаторов происходит расщепление длинных углеродных цепей.

Термический и каталитический крекинг

Основным способом переработки нефтяных фракций являются различные виды крекинга. Впервые (1871–1878) крекинг нефти был осуществлен в лабораторном и полупромышленном масштабе сотрудником Петербургского технологического института А.А.Летним. Первый патент на установку для крекинга заявлен Шуховым в 1891 г. В промышленности крекинг получил распространение с 1920-х гг.
Крекинг – это термическое разложение углеводородов и других составных частей нефти. Чем выше температура, тем больше скорость крекинга и больше выход газов и ароматических углеводородов.
Крекинг нефтяных фракций кроме жидких продуктов дает первостепенно важное сырье – газы, содержащие непредельные углеводороды (олефины).
Различают следующие основные виды крекинга:
жидкофазный (20–60 атм, 430–550 °С), дает непредельный и насыщенный бензины, выход бензина порядка 50%, газов 10%;
парофазный (обычное или пониженное давление, 600 °С), дает непредельно-ароматический бензин, выход меньше, чем при жидкофазном крекинге, образуется большое количество газов;
пиролиз нефти (обычное или пониженное давление, 650–700 °С), дает смесь ароматических углеводородов (пиробензол), выход порядка 15%, более половины сырья превращается в газы;
деструктивное гидрирование (давление водорода 200–250 атм, 300–400 °С в присутствии катализаторов – железа, никеля, вольфрама и др.), дает предельный бензин с выходом до 90%;
каталитический крекинг (300–500 °С в присутствии катализаторов – AlCl 3 , алюмосиликатов, МоS 3 , Сr 2 О 3 и др.), дает газообразные продукты и высокосортный бензин с преобладанием ароматических и предельных углеводородов изостроения.
В технике большую роль играет так называемый каталитический риформинг – превращение низкосортных бензинов в высокосортные высокооктановые бензины или ароматические углеводороды.
Основными реакциями при крекинге являются реакции расщепления углеводородных цепей, изомеризации и циклизации. Огромную роль в этих процессах играют свободные углеводородные радикалы.

Коксохимическое производство
и проблема получения жидкого топлива

Запасы каменного угля в природе значительно превышают запасы нефти. Поэтому каменный уголь – важнейший вид сырья для химической отрасли промышленности.
В настоящее время в промышленности используется несколько путей переработки каменного угля: сухая перегонка (коксование, полукоксование), гидрирование, неполное сгорание, получение карбида кальция.

Сухая перегонка угля используется для получения кокса в металлургии или бытового газа. При коксовании угля получают кокс, каменноугольную смолу, надсмольную воду и газы коксования.
Каменноугольная смола содержит самые разнообразные ароматические и другие органические соединения. Разгонкой при обычном давлении ее разделяют на несколько фракций. Из каменноугольной смолы получают ароматические углеводороды, фенолы и др.
Газы коксования содержат преимущественно метан, этилен, водород и оксид углерода(II). Частично их сжигают, частично перерабатывают.
Гидрирование угля осуществляют при 400–600 °С под давлением водорода до 250 атм в присутствии катализатора – оксидов железа. При этом получается жидкая смесь углеводородов, которые обычно подвергают гидрированию на никеле или других катализаторах. Гидрировать можно низкосортные бурые угли.

Карбид кальция СаС 2 получают из угля (кокса, антрацита) и извести. В дальнейшем его превращают в ацетилен, который используется в химической отрасли промышленности всех стран во все возрастающих масштабах.

Из истории развития ОАО «Роснефть – КНОС»

История развития завода тесно связана с нефтегазовой отраслью промышленности Кубани.
Начало добычи нефти в нашей стране уходит в далекое прошлое. Еще в X в. Азербайджан торговал нефтью с различными странами. На Кубани промышленная разработка нефти началась в 1864 г. в Майкопском районе. По просьбе начальника Кубанской области генерала Кармалина Д.И.Менделеев в 1880 г. дал заключение о нефтеносности Кубани: «Здесь нефти надо ждать много, здесь она расположена по длинной прямой линии, параллельной хребту и идущей около предгорий, примерно по направлению от Кудако на Ильскую».
В годы первых пятилеток были произведены большие поисковые работы и начата промышленная добыча нефти. Попутный нефтяной газ частично использовался как бытовое топливо в рабочих поселках, а большая часть этого ценного продукта сжигалась на факелах. Чтобы покончить с расточительностью природных богатств, Министерство нефтяной промышленности СССР в 1952 г. приняло решение построить в поселке Афипском газобензиновый завод.
В течение 1963 г. был подписан акт ввода в эксплуатацию первой очереди Афипского газобензинового завода.
В начале 1964 г. началась переработка газоконденсатов Краснодарского края с получением бензина А-66 и дизельного топлива. Сырьем служил газ Каневского, Березанского, Ленинградского, Майкопского и других крупных месторождений. Совершенствуя производство, коллектив завода освоил выпуск авиационного бензина Б-70 и автобензина А-72.
В августе 1970 г. введены в строй две новые технологические установки по переработке газоконденсата с получением ароматики (бензола, толуола, ксилола): установка вторичной перегонки и установка каталитического риформинга. Одновременно были построены очистные сооружения с биологической очисткой сточных вод и товарно-сырьевая база завода.
В 1975 г. вошла в строй установка по производству ксилолов, а в 1978 г. – установка деметилирования толуола импортного исполнения. Завод стал одним из ведущих в Миннефтепроме по выработке ароматических углеводородов для химической отрасли промышленности.
В целях совершенствования структуры управления предприятия и организации производственных подразделений в январе 1980 г. создано производственное объединение «Краснодарнефтеоргсинтез». В объединение вошли три завода: Краснодарская площадка (действует с августа 1922 г.), Туапсинский нефтеперерабатывающий завод (действует с 1929 г.) и Афипский нефтеперерабатывающий завод (действует с декабря 1963 г.).
В декабре 1993 г. произошла реорганизация предприятия, а в мае 1994 г. АООТ «Краснодарнефтеоргсинтез» было переименовано в ОАО «Роснефть – Краснодарнефтеоргсинтез».

Статья подготовлена при поддержке компании ООО «Мет С». Если вам нужно избавиться от чугунной ванны, раковины или прочего металлического хлама, то оптимальным решением станет обратиться в компанию «Мет С». На сайте, расположенном по адресу "www.Metalloloms.Ru", вы сможете, не отходя от экрана монитора, заказать демонтаж и вывоз металлолома , по выгодной цене. В компании «Мет С» работают только высококвалифицированные специалисты большим стажем работы.

Окончание следует

Сухая перегонка каменного угля.

Ароматические углеводороды получаются главным образом при сухой перегонке каменного угля. При нагревании каменного угля в ретортах или коксовальных печах без доступа воздуха при 1000–1300 °C происходит разложение органических веществ каменного угля с образованием твердых, жидких и газообразных продуктов.

Твердый продукт сухой перегонки – кокс – представляет собой пористую массу, состоящую из углерода с примесью золы. Кокс вырабатывается в огромных количествах и потребляется главным образом металлургической промышленностью в качестве восстановителя при получении металлов (в первую очередь железа) из руд.

Жидкие продукты сухой перегонки – это черная вязкая смола (каменноугольный деготь), и водный слой, содержащий аммиак, – аммиачная вода. Каменноугольного дегтя получается в среднем 3 % от массы исходного каменного угля. Аммиачная вода – один из важных источников получения аммиака. Газообразные продукты сухой перегонки каменного угля носят название коксового газа. Коксовый газ имеет различный состав в зависимости от сорта угля, режима коксования и т. д. Коксовый газ, получаемый в коксовальных батареях, пропускают через ряд поглотителей, улавливающих смолы, аммиак и пары легкого масла. Легкое масло, получаемое путем конденсации из коксового газа, содержит 60 % бензола, толуол и другие углеводороды. Большая часть бензола (до 90 %) получается именно этим способом и лишь немного – путем фракционирования каменноугольного дегтя.

Переработка каменноугольного дегтя. Каменноугольный деготь имеет вид черной смолистой массы с характерным запахом. В настоящее время из каменноугольного дегтя выделено свыше 120 различных продуктов. Среди них ароматические углеводороды, а также ароматические кислородсодержащие вещества кислого характера (фенолы), азотосодержащие вещества основного характера (пиридин, хинолин), вещества, содержащие серу (тиофен), и др.

Каменноугольный деготь подвергают фракционной перегонке, в результате которой получают несколько фракций.

Легкое масло содержит бензол, толуол, ксилолы и некоторые другие углеводороды. Среднее, или карболовое, масло содержит ряд фенолов.

Тяжелое, или креозотовое, масло: из углеводородов в тяжелом масле содержится нафталин.

Получение углеводородов из нефти Нефть – один из главных источников ароматических углеводородов. Большинство видов

нефти содержит лишь очень небольшое количество углеводородов ароматического ряда. Из отечественной нефти богата ароматическими углеводородами нефть Уральского (Пермского) месторождения. Нефть «Второго Баку» содержит до 60 % ароматических углеводородов.

В связи с дефицитностью ароматических углеводородов теперь пользуются «ароматизацией нефти»: нефтяные продукты нагревают при температуре около 700 °C, в результате чего из продуктов разложения нефти удается получить 15–18 % ароматических углеводородов.

32. Синтез, физические и химические свойства ароматических углеводородов

1. Синтез из ароматических углеводородов и гало-генопроизводных жирного ряда в присутствии катализаторов (синтез Фриделя-Крафтса).

2. Синтез из солей ароматических кислот.

При нагревании сухих солей ароматических кислот с натронной известью происходит разложение солей с образованием углеводородов. Этот способ аналогичен получению углеводородов жирного ряда.

3. Синтез из ацетилена. Эта реакция представляет интерес как пример синтеза бензола из углеводородов жирного ряда.

При пропускании ацетилена через нагретый катализатор (при 500 °C) происходит разрыв тройных связей ацетилена и полимеризация трех его молекул в одну молекулу бензола.

Физические свойства Ароматические углеводороды представляют собой жидкости или твердые тела с

характерным запахом. Углеводороды, имеющие в молекулах не более одного бензольного кольца, легче воды. В воде ароматические углеводороды растворимы мало.

Для ИК-спектров ароматических углеводородов характерны в первую очередь три области:

1) около 3000 см-1 , обусловленная валентными колебаниями С-Н;

2) область 1600–1500 см-1 , связанная со скелетными колебаниями ароматических углерод-углеродных связей и значительно варьирующая по положению пиков в зависимости от строения;

3) область ниже 900 см-1 , относящаяся к деформационным колебаниям С-Н ароматического кольца.

Химические свойства Важнейшими общими химическими свойствами ароматических углеводородов являются

их склонность к реакциям замещения и большая прочность бензольного ядра.

Гомологи бензола имеют в своей молекуле бензольное ядро и боковую цепь, например в углеводороде С 6 Н5 -С2 Н5 группа С6 Н5 – бензольное ядро, а С2 Н5 – боковая цепь. Свойства

бензольного ядра в молекулах гомологов бензола приближаются к свойствам самого бензола. Свойства боковых цепей, являющихся остатками углеводородов жирного ряда, приближаются к свойствам жирных углеводородов.

Можно разделить реакции бензольных углеводородов на четыре группы.

33. Правила ориентации в бензольном ядре

При изучении реакций замещения в бензольном ядре было обнаружено, что если в бензольном ядре уже содержится какая-либо замещающая группа, то вторая группа вступает в определенное положение в зависимости от характера первого заместителя. Таким образом, каждый заместитель в бензольном ядре обладает определенным направляющим, или ориентирующим, действием.

На положение вновь вводимого заместителя также оказывает влияние природа самого заместителя, т. е. электрофильная или нуклеофильная природа действующего реагента. Подавляющее большинство наиболее важных реакций замещения в бензольном кольце – это реакции электрофильного замещения (замена атома водорода, отщепляющегося в виде протона, положительно заряженной частицей) – реакции галогенирования, сульфирования, нитрования и др.

Все заместители по характеру своего направляющего действия делятся на две группы.

1. Заместители первого рода в реакциях электро-фильного замещения направляют последующие вводимые группы в орто– и параположение.

К заместителям этого рода относятся, например, следующие группы, расположенные в порядке убывания своей направляющей силы: -NH2 , -OH, – CH3.

2. Заместители второго рода в реакциях электро-фильного замещения направляют последующие вводимые группы в метаположение.

К заместителям этого рода относятся следующие группы, расположенные в порядке убывания своей направляющей силы: -NO2 , -C≡N, – SO3 H.

Заместители первого рода содержат одинарные связи; для заместителей второго рода характерно наличие двойных или тройных связей.

Заместители первого рода в подавляющем большинстве случаев облегчают реакции замещения. Например, для нитрования бензола нужно нагревать его со смесью концентрированных азотной и серной кислот, тогда как фенол С6 Н5 ОН можно успешно

нитровать разбавленной азотной кислотой при комнатной температуре с образованием орто– и паранитрофенола.

Заместители второго рода обычно вообще затрудняют реакции замещения. Особенно затруднено замещение в орто– и параположении и относительно легче происходит замещение в мета-положении.

В настоящее время влияние заместителей объясняют тем, что заместители первого рода являются электронодонорными (отдающими электроны), т. е. их электронные облака смещаются в сторону бензольного ядра, что повышает реакционную способность атомов водорода.

Повышение реакционной способности атомов водорода в кольце облегчает течение электрофильных реакций замещения. Так, например, при наличии ги-дроксила свободные электроны кислородного атома сдвигаются в сторону кольца, что повышает электронную плотность в кольце, причем особенно повышается электронная плотность у атомов углерода в орто-и параположениях к заместителю.

34. Правила замещения в бензольном ядре

Правила замещения в бензольном ядре имеют огромное практическое значение, так как дают возможность предсказать ход реакции и выбрать правильный путь синтеза того или другого нужного вещества.

Механизм реакций электрофильного замещения в ароматическом ряду. Современные методы исследования дали возможность в значительной степени выяснить механизм замещения в ароматическом ряду. Интересно, что во многих чертах, особенно на первых стадиях, механизм электрофильного замещения в ароматическом ряду оказался сходным с механизмом электрофильного присоединения в жирном ряду.

Первой стадией электрофильного замещения является (как при электрофильном присоединении) образование p-комплекса. Электрофильная частица Xd+ связывается со всеми шестью p-электронами бензольного кольца.

Второй стадией становится образование р-комп-лекса. При этом электрофильная частица «вытягивает» из шести р-электронов два электрона для образования обычной ковалентной связи. Образовавшийся р-комплекс уже не обладает ароматической структурой: это нестабильный карбокатион, в котором четыре р-электрона в делокализованном состоянии распределены между пятью углеродными атомами, тогда как шестой углеродный атом переходит в насыщенное состояние. Вступивший заместитель X и атом водорода находятся в плоскости, перпендикулярной плоскости шестичленного кольца. S-комплекс – это промежуточный продукт, образование и структура которого были доказаны рядом методов, в частности спектроскопией.

Третья стадия электрофильного замещения заключается в стабилизации S-комплекса, которая достигается путем отщепления атома водорода в виде протона. Два электрона, участвовавшие в образовании связи С-Н, после отделения протона вместе с четырьмя делокализованными электронами пяти углеродных атомов дают обычную стабильную ароматическую структуру замещенного бензола. Роль катализатора (обычно А 1 Сl3 ) при этом

процессе заключается в усилении поляризации галогеналкила с образованием положительно заряженной частицы, которая и вступает в реакцию электрофильного замещения.

Реакции присоединения Бензольные углеводороды с большим трудом вступают в реакцию присоединения – не

обесцвечивают бромной воды и раствора КМnO4 . Однако в особых условиях реакции

присоединения все же возможны. 1. Присоединение галогенов.

Кислород при этой реакции играет роль отрицательного катализатора: в его присутствии реакция не идет. Присоединение водорода в присутствии катализатора:

C6 H6 + 3H2 → C6 H12

2. Окисление ароматических углеводородов.

Сам бензол исключительно стоек к окислению – более стоек, чем парафины. При действии энергичных окислителей (КМпО4 в кислой среде и др.) на гомологи бензола ядро бензола не окисляется, тогда как боковые цепи подвергаются окислению с образованием ароматических кислот.

Природные источники углеводородов Ф.И.О. Старчевая Арина Группа В-105 2013 г.

Природные источники Природными источниками углеводородов являются горючие ископаемые - нефть и газ, уголь и торф. Залежи сырой нефти и газа возникли 100-200 миллионов лет назад из микроскопических морских растений и животных, которые оказались включенными в осадочные породы, образовавшиеся на дне моря, В отличие от этого уголь и торф начали образовываться 340 миллионов лет назад из растений, произраставших на суше.

Природный газ и сырая нефть обычно обнаруживаются вместе с водой в нефтеносных слоях, расположенных между слоями горных пород (рис. 2). Термин «природный газ» применим также к газам, которые образуются в природных условиях в результате разложения угля. Природный газ и сырая нефть разрабатываются на всех континентах, за исключением Антарктиды. Крупнейшими производителями природного газа в мире являются Россия, Алжир, Иран и Соединенные Штаты. Крупнейшими производителями сырой нефти являются Венесуэла, Саудовская Аравия, Кувейт и Иран. Природный газ состоит главным образом из метана. Сырая нефть представляет собой маслянистую жидкость, окраска которой может быть самой разнообразной – от темно-коричневой или зеленой до почти бесцветной. В ней содержится большое число алканов. Среди них есть неразветвленные алканы, разветвленные алканы и циклоалканы с числом атомов углерода от пяти до 50. Промышленное название этих циклоалканов-начтены. В сырой нефти, кроме того, содержится приблизительно 10% ароматических углеводородов, а также небольшое количество других соединений, содержащих серу, кислород и азот.

природный газ используется и как топливо, и в качестве сырья для получения разнообразных органических и неорганических веществ. Вы уже знаете, что из метана, основного компонента природного газа, получают водород, ацетилен и метиловый спирт, формальдегид и муравьиную кислоту, многие другие органические вещества. В качестве топлива природный газ используют на электростанциях, в котельных системах водяного отопления жилых домов и промышленных зданий, в доменном и мартеновском производствах. Чиркая спичкой и зажигая газ в кухонной газовой плите городского дома, вы «запускаете» цепную реакцию окисления алканов, входящих в состав природного газа. , Кроме нефти, природного и попутного нефтяного газов, природным источником углеводородов является каменный уголь. 0н образует мощные пласты в земных недрах, его разведанные запасы значительно превышают запасы нефти. Как и нефть, каменный уголь содержит большое количество различных органических веществ. Кроме органических, в его состав входят и неорганические вещества, такие, например, как вода, аммиак, сероводород и конечно же сам углерод - уголь. Одним из основных способов переработки каменного угля является коксование - прокаливание без доступа воздуха. В результате коксования, которое проводят при температуре около 1000 °С, образуются: коксовый газ, в состав которого входят водород, метан, Угарный и углекислый газ, примеси аммиака, азота и других газов; каменноугольная смола, содержащая несколько сотен раз-Личных органических веществ, в том числе бензол и его гомологи, фенол и ароматические спирты, нафталин и различные гетероциклические соединения; надсмольная, или аммиачная вода, содержащая, как ясно из названия, растворенный аммиак, а также фенол, сероводород и другие вещества; кокс - твердый остаток коксования, практически чистый углерод. Кокс используется в производстве чугуна и стали, аммиак - в производстве азотных и комбинированных удобрений, а значение органических продуктов коксования трудно переоценить. Таким образом, попутный нефтяной и природный газы, каменный уголь не только ценнейшие источники углеводородов, но и часть уникальной кладовой невосполнимых природных ресурсов, бережное и разумное использование которых - необходимое условие прогрессивного развития человеческого общества.

Сырая нефть представляет собой сложную смесь углеводородов и других соединений. В таком виде она мало используется. Сначала ее перерабатывают в другие продукты, которые имеют практическое применение. Поэтому сырую нефть транспортируют танкерами или с помощью трубопроводов к нефтеперерабатывающим заводам. Переработка нефти включает целый ряд физических и химических процессов: фракционную перегонку, крекинг, риформинг и очистку от серы.

Сырую нефть разделяют на множество составных частей, подвергая ее простой, фракционной и вакуумной перегонке. Характер этих процессов, а также число и состав получаемых фракций нефти зависят от состава сырой нефти и от требований, предъявляемых к различным ее фракциям. Из сырой нефти прежде всего удаляют растворенные в ней примеси газов, подвергая ее простой перегонке. Затем нефть подвергают первичной перегонке, в результате чего ее разделяют на газовую, легкую и среднюю фракции и мазут. Дальнейшая фракционная перегонка легкой и средней фракций, а также вакуумная перегонка мазута приводит к образованию большого числа фракций. В табл. 4 указаны диапазоны температур кипения и состав различных фракций нефти, а на рис. 5 изображена схема устройства первичной дистилляционной (ректификационной) колонны для перегонки нефти. Перейдем теперь к описанию свойств отдельных фракций нефти.

Месторождения нефти содержат, как правило, большие скопления так называемого попутного нефтяного газа, который собирается над нефтью в земной коре и частично растворяется в ней под давлением вышележащих пород. Как и нефть, попутный нефтяной газ является ценным природным источником углеводородов. Он содержит в основном алканы, в молекулах которых от 1 до 6 атомов углерода. Очевидно, что по составу попутный нефтяной газ значительно беднее нефти. Однако, несмотря на это, он также широко используется и в качестве топлива, и в качестве сырья для химической промышленности. Еще несколько десятилетий назад на большинстве месторождений нефти попутный нефтяной газ сжигали как бесполезное приложение к нефти. В настоящее время, например, в Сургуте, богатейшей нефтяной кладовой России, вырабатывают самую дешевую в мире электроэнергию, используя как топливо попутный нефтяной газ.

Спасибо за внимание.

Природный источник углеводородов
Его основные характеристики
Нефть

Многокомпонентная смесь, состоящая преимущественно из углеводородов. Углеводороды представлены в основном алканами, циклоалканами и аренами.

Попутный нефтяной газ

Смесь, состоящая практически только из алканов с длинной углеродной цепью от 1 до 6-ти углеродных атомов, образуется попутно при добыче нефти, отсюда и происхождение названия. Имеет место такая тенденция: чем меньше молекулярная масса алкана, тем его процентное содержание в попутном нефтяном газе выше.

Природный газ

Смесь, состоящая преимущественно из низкомолекулярных алканов. Основной компонент природного газа — метан. Его процентное содержание в зависимости от месторождения газа может быть от 75 до 99%. На втором месте по концентрации с большим отрывом — этан, еще меньше содержится пропана и т.д.

Принципиальное отличие природного газа от попутного нефтяного заключается в том, что в попутном нефтяном газе намного выше доля пропана и изомерных бутанов.

Каменный уголь

Многокомпонентная смесь различных соединений углерода, водорода, кислорода, азота и серы. Также в состав каменного угля входит значительное количество неорганических веществ, доля которых существенно выше, чем в нефти.

Переработка нефти

Нефть представляет собой многокомпонентную смесь различных веществ преимущественно углеводородов. Данные компоненты отличаются друг от друга по температурам кипения. В связи с этим, если нагревать нефть, то сначала из нее будут улетучиваться наиболее легкокипящие компоненты, затем соединения с более высокой температурой кипения и т.д. На данном явлении основана первичная переработка нефти , заключающаяся в перегонке (ректификации) нефти. Данный процесс называют первичным, поскольку предполагается, что при его протекании не происходят химические превращения веществ, а нефть лишь разделяется на фракции с различными температурами кипения. Ниже представлена принципиальная схема ректификационной колонны с кратким описанием самого процесса перегонки:

Перед процессом ректификации нефть специальным образом подготавливают, а именно, избавляют от примесной воды с растворенными в ней солями и от твердых механических примесей. Подготовленная таким образом нефть поступает в трубчатую печь, где нагревается до высокой температуры (320-350 о С). После нагревания в трубчатой печи нефть, обладающая высокой температурой, поступает в нижнюю часть ректификационной колонны, где происходит испарение отдельных фракций и подъем их паров вверх по ректификационной колонне. Чем выше находится участок ректификационной колонны, тем его температура ниже. Таким образом, на разной высоте отбирают следующие фракции:

1) ректификационные газы (отбирают в самой верхней части колонны, в связи с чем их температура кипения не превышает 40 о С);

2) бензиновая фракция (температуры кипения от 35 до 200 о С);

3) лигроиновая фракция (температуры кипения от 150 до 250 о С);

4) керосиновая фракция (температуры кипения от 190 до 300 о С);

5) дизельную фракцию (температуры кипения от 200 до 300 о С);

6) мазут (температуры кипения более 350 о С).

Следует отметить, что средние фракции, выделяемые при ректификации нефти, не удовлетворяют стандартам, предъявляемым к качествам топлив. Кроме того, в результате перегонки нефти образуется немалое количество мазута — далеко не самого востребованного продукта. В связи с этим после первичной переработки нефти стоит задача повышения выхода более дорогих, в частности, бензиновых фракций, а также повышения качества этих фракций. Эти задачи решаются с применением различных процессов вторичной переработки нефти , например, таких как крекинг и риформинг .

Следует отметить, что количество процессов, используемых при вторичной переработке нефти, значительно больше, и мы затрагиваем лишь одни из основных. Давайте теперь разберемся, в чем же заключается смысл этих процессов.

Крекинг (термический или каталитический)

Данный процесс предназначен для повышения выхода бензиновой фракции. Для этой цели тяжелые фракции, например, мазут подвергают сильному нагреванию чаще всего в присутствии катализатора. В результате такого воздействия длинноцепочечные молекулы, входящие в состав тяжелых фракций, рвутся и образуются углеводороды с меньшей молекулярной массой. Фактически это приводит к дополнительному выходу более ценной, чем исходный мазут, бензиновой фракции. Химическую суть данного процесса отражает уравнение:

Риформинг

Данный процесс выполняет задачу улучшения качества бензиновой фракции, в частности повышения ее детонационной устойчивости (октанового числа). Именно эта характеристика бензинов указывается на бензозаправках (92-й, 95-й, 98-й бензин и т.д.).

В результате процесса риформинга повышается доля ароматических углеводородов в бензиновой фракции, имеющих среди прочих углеводородов одни из самых высоких октановых чисел. Достигается такое увеличение доли ароматических углеводородов в основном в результате протекания при процессе риформинга реакций дегидроциклизации. Например, при достаточно сильном нагревании н -гексана в присутствии платинового катализатора он превращается в бензол, а н-гептан аналогичным образом — в толуол:

Переработка каменного угля

Основным способом переработки каменного угля является коксование . Коксованием угля называют процесс, при котором уголь нагревают без доступа воздуха. При этом в результате такого нагревания из угля выделяют четыре основных продукта:

1) Кокс

Твердая субстанция, представляющая собой практически чистый углерод.

2) Каменноугольная смола

Содержит большое количество разнообразных преимущественно ароматических соединений, таких как бензол его гомологи, фенолы, ароматические спирты, нафталин, гомологи нафталина и т.д.;

3) Аммиачная вода

Несмотря на свое название данная фракция, помимо аммиака и воды, содержит также фенол, сероводород и некоторые другие соединения.

4) Коксовый газ

Основными компонентами коксового газа являются водород, метан, углекислый газ, азот, этилен и т.д.

Важнейшие природные источники углеводородов – нефть , природный газ и каменный уголь . Они образуют богатые месторождения в различных районах Земли.

Раньше добытые природные продукты применялись исключительно как топливо. В настоящее время разработаны и широко применяются методы их переработки, позволяющие выделять ценные углеводороды, которые используются и как высококачественное топливо, и как сырье для различных органических синтезов. Переработкой природных источников сырья занимается нефтехимическая промышленность . Разберем основные способы переработки природных углеводородов.

Самый ценный источник природного сырья – нефть . Она представляет собой маслянистую жидкость темно-бурого или черного цвета с характерным запахом, практически нерастворимую в воде. Плотность нефти составляет 0,73–0,97 г/см 3 . Нефть – сложная смесь различных жидких углеводородов, в которых растворены газообразные и твердые углеводороды, причем состав нефти из различных месторождений может отличаться. В различном соотношении в составе нефти могут присутствовать алканы, циклоалканы, ароматические углеводороды, а также кислород-, серу- и азотсодержащие органические соединения.

Сырая нефть практически не применяется, а подвергается переработке.

Различают первичную переработку нефти (перегонку ), т.е. разделение ее на фракции с различными температурами кипения, и вторичную переработку (крекинг ), в процессе которой изменяют структуру углеводоро-

дов, входящих в ее состав.

Первичная переработка нефти основана на том, что температура кипения углеводородов тем больше, чем больше их молярная масса. В состав нефти входят соединения с температурами кипения от 30 до 550°С. В результате перегонки нефть разделяют на фракции, кипящие при различной температуре и содержащие смеси углеводородов с различной молярной массой. Эти фракции находят разнообразное применение (см. таблицу 10.2).

Таблица 10.2. Продукты первичной переработки нефти.

Фракция Температура кипения, °С Состав Применение
Сжиженный газ <30 Углеводороды С 3 -С 4 Газообразное топливо, сырье для химической промышленности
Бензиновая 40-200 Углеводороды С 5 – С 9 Авиационное и автомобильное топливо, растворитель
Лигроиновая 150-250 Углеводороды С 9 – С 12 Топливо для дизельных двигателей, растворитель
Керосиновая 180-300 Углеводороды С 9­ -С 16 Топливо для дизельных двигателей, бытовое топливо, осветительное горючее
Газойлевая 250-360 Углеводороды С 12 -С 35 Дизельное топливо, сырье для каталитического крекинга
Мазут > 360 Высшие углеводороды, О-,N-,S-,Ме-содержащие вещества Топливо для котельных установок и промышленных печей, сырье для дальнейшей перегонки

На долю мазута приходится около половины массы нефти. Поэтому его также подвергают термической переработке. Чтобы предотвратить разложение, мазут перегоняют при пониженном давлении. При этом получают несколько фракций: жидкие углеводороды, которые применяются в качестве смазочных масел ; смесь жидких и твердых углеводородов – вазелин , используемый при приготовлении мазей; смесь твердых углеводородов – парафин , идущий на производство гуталина, свечей, спичек и карандашей, а также для пропитки древесины; нелетучий остаток – гудрон , используемый для получения дорожных, строительных и кровельных битумов.

Вторичная переработка нефти включает химические реакции, изменяющие состав и химическое строение углеводородов. Ее разновиднос-

ти – термический крекинг, каталитический крекинг, каталитический риформинг.

Термическому крекингу обычно подвергают мазут и другие тяжелые фракции нефти. При температуре 450-550°С и давлении 2–7 МПа происходит расщепление по свободнорадикальному механизму молекул углеводородов на фрагменты с меньшим числом атомов углерода, причем образуются предельные и непредельные соединения:

С 16 Н 34 ¾® С 8 Н 18 + С 8 Н 16

C 8 H 18 ¾®C 4 H 10 +C 4 H 8

Этим способом получают автомобильный бензин.

Каталитический крекинг проводят в присутствии катализаторов (обычно алюмосиликатов) при атмосферном давлении и температуре 550 - 600°С. При этом из керосиновой и газойлевой фракций нефти получают авиационный бензин.

Расщепление углеводородов в присутствии алюмосиликатов идет по ионному механизму и сопровождается изомеризацией, т.е. образованием смеси предельных и непредельных углеводородов с разветвленным углеродным скелетом, например:

СН 3 СН 3 СН 3 СН 3 СН 3

кат., t ||

C 16 H 34 ¾¾® СН 3 -С -С-СН 3 + СН 3 -С = С - СН-СН 3

Каталитический риформинг проводят при температуре 470-540°С и давлении 1–5 МПа с использованием платинового или платино-рениевого катализаторов, нанесенных на основу из Al 2 O 3 . В этих условиях происходит превращение парафинов и

циклопарафинов нефти в ароматические углеводороды


кат., t, p

¾¾¾¾® + 3Н 2


кат., t, p

С 6 Н 14 ¾¾¾¾® + 4Н 2

Каталитические процессы позволяют получать бензин улучшенного качества благодаря высокому содержанию в нем разветвленных и ароматических углеводородов. Качество бензина характеризуется его октановым числом . Чем сильнее сжата смесь топлива с воздухом поршнями, тем больше мощность двигателя. Однако сжатие можно осуществлять только до определенного предела, выше которого происходит детонация (взрыв)

газовой смеси, вызывающий перегрев и преждевременный износ двигателя. Наименьшая стойкость к детонации у нормальных парафинов. С уменьшением длины цепи, увеличением ее разветвленности и числа двой-

ных связей она возрастает; особенно велика она у ароматических углево-

дородов. Для оценки стойкости к детонации различных сортов бензина их сравнивают с аналогичными показателями для смеси изооктана и н-геп-тана с различным соотношением компонентов; октановое число равно процентному содержанию в этой смеси изооктана. Чем оно больше, тем выше качество бензина. Октановое число можно повысить также добавлением специальных антидетонаторов, например, тетраэтилсвинца Pb(C 2 H 5) 4 , однако такой бензин и продукты его сгорания токсичны.

Помимо жидкого топлива в каталитических процессах получают низшие газообразные углеводороды, которые используются затем как сырье для органического синтеза.

Другой важный природный источник углеводородов, значение которого постоянно возрастает – природный газ . Он содержит до 98%об.метана, 2–3%об. его ближайших гомологов, а также примеси сероводорода, азота, углекислого газа, благородных газов и воды. Газы, выделяющиеся при добыче нефти (попутные ), содержат меньше метана, но больше его гомологов.

Природный газ используется в качестве топлива. Кроме того, из него путем перегонки выделяют индивидуальные предельные углеводороды, а также синтез-газ , состоящий в основном из СО и водорода; их используют как сырье для различных органических синтезов.

В больших количествах добывают каменный уголь – неоднородный твердый материал черного или серо-черного цвета. Он представляет собой сложную смесь различных высокомолекулярных соединений.

Каменный уголь используют как твердое топливо, а также подвергают коксованию – сухой перегонке без доступа воздуха при 1000-1200°С. В результате этого процесса образуются: кокс , представляющий собой тонкоизмельченный графит и применяющийся в металлургии в качестве восстановителя; каменноугольную смолу , которую подвергают перегонке и получают ароматические углеводороды (бензол, толуол, ксилол, фенол и др.) и пек , идущий на приготовление кровельного толя;аммиачную воду и коксовый газ , содержащий около 60% водорода и 25% метана.

Таким образом, природные источники углеводородов обеспечивают

химическую промышленность разнообразным и сравнительно дешевым сырьем для проведения органических синтезов, которые позволяют получать многочисленные органические соединения, не встречающиеся в природе, но необходимые человеку.

Общую схему использования природных сырьевых источников для основного органического и нефтехимического синтеза можно представить следующим образом.


Арены Синтез-газ Ацетилен АлкеныАлканы


Основной органический и нефтехимический синтез


Контрольные задания.

1222. В чем отличие первичной переработки нефти от вторичной переработки?

1223. Какие соединения определяют высокое качество бензина?

1224. Предложите способ, позволяющий, исходя из нефти, получить этиловый спирт.

Понравилась статья? Поделиться с друзьями: