Температурные инверсии над городами относятся к. Инверсия

Погода в данной местности оказывает сильное влияние на жизнедеятельность человека, поэтому информация о состоянии земной атмосферы всегда является полезной с экономических позиций и с точки зрения безопасности для здоровья. Температурная инверсия - это один из видов состояния нижних слоев атмосферы. Что она собой представляет и где проявляется, рассматривается в статье.

Что такое температурная инверсия?

Под этим понятием подразумевают рост температуры воздуха по мере увеличения высоты от земной поверхности. Это, казалось бы, безобидное определение влечет за собой достаточно серьезные последствия. Дело в том, что воздух можно считать идеальным газом, для которого давление при фиксированном объеме находится в обратной зависимости от температуры. Поскольку при температурной инверсии с увеличением высоты температура возрастает, значит, давление воздуха снижается и уменьшается его плотность.

Из школьного курса физики известно, что конвекционные процессы, которые обусловливают вертикальное перемешивание в объеме текучей субстанции, находящейся в гравитационном поле, происходят, если нижние слои являются менее плотными, чем верхние (горячий воздух всегда поднимается вверх). Таким образом, температурная инверсия препятствует конвекции в нижних слоях атмосферы.

Нормальные атмосферные условия

В результате многочисленных наблюдений и измерений было установлено, что в умеренной климатической зоне нашей планеты температура воздуха уменьшается на 6,5 °C на каждый километр высоты, то есть на 1 °C при увеличении высоты на 155 метров. Этот факт связан с тем, что нагрев атмосферы происходит не в результате прохождения через нее солнечных лучей (для видимого спектра электромагнитного излучения воздух является прозрачным), а в результате поглощения ею переизлученной энергии в инфракрасном диапазоне от поверхности земли и воды. Поэтому чем ближе воздушные слои к земле, тем они сильнее прогреваются в солнечный день.

В области тропической климатической зоны воздух с увеличением высоты охлаждается медленнее, чем указанные цифры (приблизительно на 1 °C за 180 м). Связано это с наличием в этих широтах ветров пассатов, которые переносят тепло из экваториальных областей в тропики. При этом тепло поступает из верхних слоев (1-1,5 км) в нижние, что препятствует быстрому падению температуры воздуха с увеличением высоты. Кроме того, толщина атмосферы в тропической зоне больше, чем в умеренной.

Таким образом, нормальное состояние атмосферных слоев заключается в их охлаждении с ростом высоты над уровнем моря. Такое состояние благоприятствует перемешиванию и циркуляции воздуха в вертикальном направлении за счет конвекционных процессов.

Почему верхние воздушные слои могут оказаться теплее нижних?

Иными словами, почему проявляется температурная инверсия? Происходит это по той же причине, что и существование нормальных атмосферных условий. Земля имеет большее значение теплопроводности, чем воздух. Это означает, что в ночное время суток, когда на небе нет туч и облаков, она быстро остывает и те атмосферные слои, которые находятся в непосредственном контакте с земной поверхностью, также охлаждаются. В результате получается следующая картина: холодная поверхность земли, холодный слой воздуха в непосредственной близости от нее и теплая атмосфера на некоторой высоте.

Что такое температурная инверсия и где она проявляется? Возникает описанная ситуация часто в низинах, в совершенно любой местности и любых широтах в утренние часы. Низменная местность защищена от горизонтальных перемещений воздушных масс, то есть от ветра, поэтому охлажденный за ночь воздух в ней создает локально стабильную атмосферу. Явление температурной инверсии можно наблюдать в горных долинах. Помимо описанного процесса ночного охлаждения, в горах ее образованию способствует также "сползание" холодного воздуха со склонов в равнины.

Время существования температурной инверсии может длиться от нескольких часов до нескольких дней. Нормальные атмосферные условия устанавливаются, как только земная поверхность нагревается.

Чем опасно рассматриваемое явление?

Состояние атмосферы, при котором существует температурная инверсия, является стабильным и безветренным. Это означает, что если на данной территории происходят какие-либо выбросы в атмосферу или испарение токсичных веществ, то они никуда не деваются, а остаются в воздухе над рассматриваемой местностью. Иными словами, явление температурной инверсии в атмосфере способствует многократному увеличению в ней концентрации отравляющих веществ, что представляет огромную опасность для здоровья человека.

Описанная ситуация часто возникает над крупными городами и мегаполисами. Например, от последствий температурной инверсии часто страдают такие города, как Токио, Нью-Йорк, Афины, Пекин, Лима, Куала-Лумпур, Лондон, Лос-Анджелес, Бомбей, столица Чили - Сантьяго и многие другие города по всему миру. Из-за большой концентрации людей промышленные выбросы в этих городах являются гигантскими, что приводит к появлению смога в воздухе, нарушающего видимость и создающего угрозу не только для здоровья, но и для жизни человека.

Так, в 1952 году в Лондоне и в 1962 году в Рурской долине (Германия) погибло несколько тысяч человек в результате длительного времени существования температурной инверсии и значительных выбросов в атмосферу оксидов серы.

Столица Перу, Лима

Раскрывая вопрос, что такое температурная инверсия в географии, интересно привести ситуацию в столице Перу. Она расположена на берегу Тихого океана и у подножия гор Анд. Побережье недалеко от города омывается Гумбольдта, что приводит к сильному охлаждению земной поверхности. Последняя, в свою очередь, способствует охлаждению самых нижних воздушных слоев и образованию туманов (при уменьшении температуры воздуха снижается растворимость в нем водяных паров, последнее проявляется в выпадении росы и образовании тумана).

В результате описанных процессов возникает парадоксальная ситуация: побережье Лимы покрыто туманом, который мешает лучам солнца нагревать земную поверхность. Поэтому состояние температурной инверсии является настолько стабильным (горизонтальной циркуляции воздуха мешают горы), что здесь практически никогда не идут дожди. Последний факт объясняет, почему побережье Лимы представляет собой практически пустыню.

Как себя вести в случае получения информации о неблагоприятном состоянии атмосферы?

Если человек живет в крупном городе и он получил информацию о существовании в атмосфере температурной инверсии, то рекомендуется по возможности не выходить на улицу в утренние часы, а подождать, пока земля прогреется. Если же возникает такая необходимость, тогда следует использовать индивидуальные средства защиты дыхательных органов (марлевая повязка, шарф) и не оставаться длительное время на открытом воздухе.

Инверсия означает аномальный характер изменения какого-либо параметра в атмосфере с увеличением высоты. Наиболее часто это относится к температурной инверсии, то есть к увеличению температуры с высотой в некотором слое атмосферы вместо обычного понижения.

Инверсия температуры препятствует вертикальным перемещениям воздуха и способствует образованию дымки, тумана, смога, облаков,миражей.

Причины и механизмы возникновения инверсии . При определённых условиях нормальный вертикальный градиент температуры изменяется таким образом, что более холодный воздух оказывается у поверхности Земли. Это может произойти, например, при движении тёплой, менее плотной воздушной массы над холодным, более плотным слоем. Этот тип инверсии возникает в близости тёплых фронтов, а также в областях океаническогоапвеллинга, например у берегов Калифорнии. При достаточной влажности более холодного слоя, типично образование тумана под инверсионной «крышкой». Ясной, тихой ночью при антициклоне холодный воздух может спускаться по склонам и собираться в долинах, где в результате температура воздуха будет ниже, чем на 100 или 200 м выше. Над холодным слоем там будет более тёплый воздух, который, вероятно, образует облако или лёгкий туман. Температурная инверсия наглядно демонстрируется на примере дыма от костра. Дым будет подниматься вертикально, а затем, когда достигнет «слоя инверсии», изогнётся горизонтально. Если эта ситуация создаётся в больших масштабах, пыль и грязь (смог), поднимающиеся в атмосферу, остаются там и, накапливаясь, приводят к серьёзному загрязнению.

Инверсия опускания

Инверсия температуры может возникнуть в свободной атмосфере при опускании широкого слоя воздуха, и нагреве его вследствие адиабатического сжатия, что обычно связывается ссубтропическими областями высокого давления. Турбулентность может постепенно поднять инверсионный слой на большую высоту и «проколоть» его, в результате чего образуются грозы и даже (при определённых обстоятельствах) тропические циклоны.

Как связаны значения температурного градиента в тропосфере с устойчивостью атмосферы?

Устойчивость атмосферы проявляется в отсутствии в ней значительных вертикальных движений и перемешиваний. Тогда загр. вещества, выброшенные в атм-ру вблизи земной поверхности, будут задерживаться там. К счастью, перемешиванию воздуха в нижней атмосфере способств. много факторов, один из которых – температурный градиент. Интенсивность теплового перемешивания определяют, сравнивая температурный градиент, реально наблюдаемый в окруж. среде, с адиабатическим вертикальным градиентом температуры (см.рис.).

Когда темп. град-т в окр. среде больше Г(сухоадиаб.вертик.град-т), атмосфера – сверхадиабатическая. Рассм. точку А на рис. 5.1.а. Если объем воздуха с температурой, соотв. точке А, переносится быстро вверх, его конечное состояние м.б. описано точкой Б на прямой сверхадиаб.гр. В этом сост. его температура Т(1) выше реальной темп-рыокр.среды Т(2) в точке В. Поэтому рассматриваемый объем воздуха будет иметь меньшую плотность, чем окруж. воздух, и тенденцию продолжать движение вверх. Если же этот элем. объем из т.А начнет случ. двигаться вниз, он адиабатически сожмется при темп-ре в т.Д, которая ниже Т(окр.возд.) в т.Е. Обладая, т.о., более высокой плотностью, воздух будет продолжать движение вниз. Т.о., атмосфера, для которой характеренсверхадиаб. гр-т температур, является неустойчивой. Когда град.темп-рыокр.воздуха примерно равен сверхадиаб. вертикальному (рис.5.1.б), устойчивость атмосферы называют безразличной: если происходит вертик. перемещение объема воздуха, то его темп-раоказ. такой же, как и у окружающего воздуха, нет тенденции к дальнейшему перемещению. Если темпер. град-т окр.воздуха меньше Г, то атмосфера – подадиабатическая (рис.5.1.в). Аналогично с прошлым выводом можно показать, что она устойчива, т.к. случайно перемещ. объем воздуха будет стремиться вернуть свое первонач. положение.

Инверсия в метеорологии означает аномальный характер изменения какого-либо параметра в атмосфере с увеличением высоты. Наиболее часто это относится к температурной инверсии, то есть к увеличению температуры с высотой в некотором слое атмосферы вместо обычного понижения.

Различают два типа инверсии:

Приземные инверсии температуры, начинающиеся непосредственно от земной поверхности (толщина слоя инверсии - десятки метров)

Инверсии температуры в свободной атмосфере (толщина слоя инверсии достигает сотни метров)

Инверсия температуры препятствует вертикальным перемещениям воздуха и способствует образованию дымки, тумана, смога, облаков, миражей. Инверсия сильно зависит от местных особенностей рельефа. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °C и более. Наибольшей мощностью обладают приземные инверсии температуры в Восточной Сибири и в Антарктиде в зимний период.

Нормальные атмосферные условия

Как правило, в нижних слоях атмосферы (тропосфера) воздух около поверхности Земли теплее чем воздух, расположенный выше, поскольку атмосфера в основном нагревается от солнечного излучения через земную поверхность. С изменением высоты температура воздуха понижается, средняя скорость уменьшения составляет 1 °C на каждые 160 м.

Причины и механизмы возникновения инверсии

При определённых условиях нормальный вертикальный градиент температуры изменяется таким образом, что более холодный воздух оказывается у поверхности Земли. Это может произойти, например, при движении тёплой, менее плотной воздушной массы над холодным, более плотным слоем. Этот тип инверсии возникает в близости тёплых фронтов, а также в областях океанического апвеллинга (Апвеллинг (англ. upwelling) или подъём - это процесс, при котором глубинные воды океана поднимаются к поверхности), например у берегов Калифорнии. При достаточной влажности более холодного слоя, типично образование тумана под инверсионной «крышкой».
Ясной, тихой ночью при антициклоне холодный воздух может спускаться по склонам гор и собираться в долинах, где в результате температура воздуха будет ниже, чем на 100 или 200 м выше. Над холодным слоем там будет более тёплый воздух, который, вероятно, образует облако или лёгкий туман. Температурная инверсия наглядно демонстрируется на примере дыма от костра. Дым будет подниматься вертикально, а затем, когда достигнет «слоя инверсии», изогнётся горизонтально. Если эта ситуация создаётся в больших масштабах, пыль и грязь (смог), поднимающиеся в атмосферу, остаются там и, накапливаясь, приводят к серьёзному загрязнению.

Инверсия опускания

Инверсия температуры может возникнуть в свободной атмосфере при опускании широкого слоя воздуха, и нагреве его вследствие адиабатического сжатия, что обычно связывается с субтропическими областями высокого давления. Турбулентность может постепенно поднять инверсионный слой на большую высоту и «проколоть» его, в результате чего образуются грозы и даже (при определённых обстоятельствах) тропические циклоны.

Последствия температурной инверсии

При прекращении нормального процесса конвекции происходит загрязнение нижнего слоя атмосферы. Это вызывает проблемы в городах с большими объёмами выбросов. Инверсионные эффекты часто возникают в таких больших городах, как Мумбаи (Индия), Лос-Анджелес (США), Мехико (Мексика), Сан-Паулу (Бразилия), Сантьяго (Чили) и Тегеран (Иран). Небольшие города, такие как Осло (Норвегия) и Солт-Лейк-Сити (США), расположенные в долинах холмов и гор, также испытывают влияние запирающего инверсионного слоя. При сильной инверсии загрязнения воздуха могут стать причиной респираторных заболеваний. Великий смог в 1952 году в Лондоне является одним из самых серьёзных подобных событий - из-за него умерло более 10 тысяч человек.
Температурная инверсия представляет опасность для взлетающих самолётов, так как при входе воздушного судна в вышележащие слои более теплого воздуха снижается тяга двигателей.
Зимой инверсия может привести к опасным явлениям природы. Очень сильным морозам в антициклоне. Ледяному дождю при выходе атлантических и южных циклонов(особенно при прохождение их тёплых фронтов).

Плавное убывание температур с высотой следует считать только общим свойством тропосферы. Очень часто наблюдается такая стратификация воздуха, при которой в направлении вверх температура или не падает, или даже повышается. Возрастание температуры с высотой над земной поверхностью называется ее инверсией (лат. inversio - переворачивание).

По мощности слоя воздуха, в котором наблюдается повышение температуры, различают инверсии приземные, захватывающие несколько метров, и свободной атмосферы, простирающиеся до 3 км. Приращение температуры (или величина инверсии) может достигать 10° С и более. Тропосфера оказывается расслоенной: одна масса воздуха от другой отделяется слоем инверсии.

По происхождению приземные инверсии разделяются на радиационные, адвективные, орографические и снежные. Часто возникают смешанные типы, поскольку процессы, вызывающие инверсии, действуют совокупно.

Радиационная инверсия возникает летом при тихой и безоблачной погоде. После захода солнца поверхность, а от нее и нижние слои воздуха охлаждаются, а лежащие выше еще сохраняют дневной запас тепла. Образуется инверсия. Мощность таких инверсий колеблется от 10 до 300 м в зависимости от погоды. Радиационная инверсия бывает над ледяными поверхностями в ‘ любое время года при потере ими тепла лучеиспусканием.

Орографические инверсии формируются в пересеченной местности при безветренной погоде, когда холодный воздух стекает вниз, а на холмах и склонах гор удерживается более теплый.

Адвективная инверсия бывает при продвижении теплого воздуха в холодную местность. Причем нижние слои воздуха охлаждаются от соприкосновения с холодной поверхностью, а верхние на время остаются теплыми.

Снежные, или весенние, инверсии наблюдаются ранней весной над снежныМи поверхностями. Они вызываются затратой воздухом большого количества тепла на таяние снега.

В свободной атмосфере наиболее распространены анти-циклональные инверсии сжатия и циклонические фронтальные инверсии.

Инверсии сжатия образуются в антициклонах зимой и наблюдаются на высотах 1-2 км. Температура опускающегося воздуха в средней тропосфере повышается, но близ земной поверхности, где начинается горизонтальное растекание воздуха, она понижается. Это явление наблюдается на огромных площадях Арктики, Антарктиды, Восточной Сибири и др. Фронтальные инверсии образуются в циклонах вследствие натекания теплого воздуха на холодный.

Следовательно, инверсии температуры не исключение, а одно из постоянных свойств погоды и климата. В разные сезоны и в разных местностях они отмечены в 75-98% всех наблюдений.

С понятием “инверсия” у парапланеристов связанно очень много впечатлений и воспоминаний. Обычно об этом явлении говорят с сожалением, что-то типа “опять низкая инверсия не дала пролететь хороший маршрут” или “я уперся в инверсию и не смог набрать больше”. Давайте разберемся с этим явлением, с тем так ли оно плохо? И с обычными ошибками, которые допускают парапланеристы рассказывая об “инверсии”.

Итак обратимся для начала к Википедии:

Инверсия в метеорологии – означает аномальный характер изменения какого-либо параметра в атмосфере с увеличением высоты. Наиболее часто это относится к температурной инверсии , то есть к увеличению температуры с высотой в некотором слое атмосферы вместо обычного понижения.

Так что выходит, что говоря об “инверсии”, мы говорим именно о температурной инверсии. То есть об увеличении температуры с высотой в некотором слое воздуха. – Этот момент очень важно себе твердо уяснить, ведь говоря о состоянии атмосферы можно выделить что для нижней части атмосферы (до тропопаузы):

  • Нормальное состояние – когда температура воздуха с увеличением высоты – уменьшается . Например средняя скорость падения температуры с высотой для стандартной атмосферы принята ИКАО в 6.49 град К на км.
  • Не нормальное состояние остается постоянной (изотермия )

  • Так же не нормальное состояние – когда температура с увеличением высоты увеличивается (инверсия температуры )

Наличие изотермии или настоящей инверсии в каком-то слое воздуха – означает что атмосферный градиент тут равен нулю или даже отрицателен, и это явно свидетельствует о СТАБИЛЬНОСТИ атмосферы ().

Свободно поднимающийся объем воздуха, попадая в такой слой очень быстро теряет свою разницу в температуре между ним и окружающей средой.(Воздух поднимаясь охлаждается по сухо- или влажноадиабатическому градиенту, а воздух окружающий его среды – не меняет температуру или даже нагревается. Та разница температур, что являлась причиной превышения силы Архимеда, над силой тяжести быстро нивелируется и движение прекращается).

Приведем пример, предположим у нас есть некий объем воздуха, который перегрелся у поверхности земли, относительно окружающего его воздуха, на 3 градуса K. Этот объем воздуха, отрываясь от земли порождает термический пузырь (термик). На начальном этапе его температура на 3 градуса выше, а следовательно плотность для того же объема, по сравнению с окружающем его воздухом – ниже. Следовательно сила Архимеда будет превышать силу тяжести, и воздух начнет двигаться вверх с ускорением (всплывать). Всплывая вверх, атмосферное давление будет все время падать, всплывающий объем будет расширяться, и расширяясь охлаждаться по сухоадиабатическому закону (перемешивание воздуха обычно пренебрегают на больших объемах).

Долго ли он будет всплывать? – зависит от того как быстро по высотам, охлаждается окружающая среда вокруг него. Если закон изменения охлаждения окружающей среды такой же как сухоадиабатический закон – то начальная “перегретость относительно окружающей среды” все время будет сохраняться, и наш всплывающий пузырь все время будет разгоняться (сила трения будет увеличиваться со скоростью, и при значимых скоростях её уже нельзя будет пренебрегать, ускорение будет – уменьшаться).

Но такие условия – крайне редки, чаще всего мы имеем атмосферный градиент в районе 6.5 – 9 град К на км. Возьмем для примера 8 град К на км.

Разница между атмосферным градиентом и сухоадиабатическим = 10-8=2 град К на км, тогда на высоте 1 км от поверхности, от начальной перегретости в 3 градуса, осталась только 1. (наш пузырь охладился на 9.8=10 градусов, а окружающий воздух на 8). Еще 500м подъема и температуры сравняются. То есть на высоте 1.5 км,температура пузыря и температура окружающего воздуха будут одинаковы, сила Архимеда и сила тяжести уравновесятся. Что произойдет с пузырем? Во всех парапланерных книгах, пишут – что он останется на этом уровне. Да, в конечном счете, теоретически, именно это и произойдет. Но по динамика процесса нам летающим – тоже важна.

Зависание пузыря на новом, равновесном уровне будет не сразу. И если бы, не было тех явлений, которыми пренебрегают описывая подъем пузыря (сила трения, перемешивание с окружающим воздухом, теплообмен с окружающим воздухом) он бы и не завис никогда:).

Вначале он “по инерции” проскочит выше, равновесного уровня (он же разгонялся все время что поднимался и имеет уже приличную скорость, а значит и запас кинетической энергии. Поднимаясь над этим уровнем (1.5 км), градиент будет работать уже в противоположную сторону, то есть наш объем воздуха будет охлаждаться быстрее чем окружающий, сила тяжести будет превышать силу Архимеда, и результирующая сила будет действовать уже вниз, тормозя (вместе с силой трения) его движение. На какой-то высоте, их действие полностью остановит наш пузырь и он начнет движение вниз. Если полностью пренебречь силой трения и считать что воздух не смешивается с окружающим и не обменивается энергией, то он бы колебался вверх вниз от 0 до 3000м. Но в реальности этого конечно не происходит. Сила трения, теплообмен и смешивание – присутствуют и колебания быстро затухают. Особенно быстро их ограничивают слои с разными градиентами.

Рассмотрим теперь тот же пример, только со слоем инверсии, градиентом в -5 град К на км (помним что в метеорологии градиент с обратным знаком), на высоте 750м толщиной в 300м.

Тогда за первые 750м наш пузырь потеряет 1.5 градуса перегретости (10-8=2 град К на км. 2*0,75 = 1,5 град) , поднимаясь дальше он продолжит охлаждаться на 1 град на каждые 100м, а начиная с высоты 750м, окружающий воздух только повышает свою температуру. Значит разница между градиентами. 10–5=15 град К на км, или 1.5 град на 100м. И через следующие 100м (на высоте 850 метров), пузырь по температуре сравняется с окружающей средой.

Значит слой инверсии с градиентом -5град К на км быстро остановил пузырь. (Так же быстро он погасит инерцию пузыря, в идеале через 200м, а по факту, с учетом трения, перемешивания и теплообмена – существенно раньше).

Мы видим, что слой инверсии ограничивает колебания пузыря (если мы пренебрегаем трением, перемешиванием и теплообменом) с диапазона 0-3000м, до диапазона 0- 1050м.

Так ли плоха инверсия? Если она на низкой высоте, и замедляет наши термики – это плохо. Если она на достаточно большой высоте и защищает от подъема воздуха в зоны нестабильности в которых происходит конденсация, и где влажноадиабатический градиент меньше чем атмосферный, то инверсия – это хорошо.

Из-за чего возникает инверсия температуры?

Ведь строго говоря, для термодинамического равновесия атмосферы до уровня тропопаузы – это не нормальное состояние.

Выделяют 2 вида инверcии по месту проявления:

  • приземная (та которая начинает от поверхности земли)
  • инверсия на высоте (какой-то слой на высоте)

И можно выделить 4 типа инверсии, по видам ее возникновения. со всеми из них мы можем легко столкнутся в повседневной жизни и на полетах:

  • приземного радиационного выхолаживания
  • инверсия подтекания
  • инверсия адвективного переноса
  • инверсия оседания

С приземной инверсией все просто, её еще называют инверсией радиационного выхолаживания или ночной инверсией. Поверхность земли, при ослаблении поступления тепла от солнца быстро охлаждается (в том числе и из-за инфракрасного излучения). Охлажденная поверхность охлаждает и прилегающий к ней слой воздуха. Так как воздух – плохо переносит тепло, то выше определенной высоты это охлаждение уже не чувствуется.

Приземная инверсия

Толщина слоя интенсивность его переохлаждения зависят от:

  • длительности охлаждения, чем длиннее ночь тем больше выхолаживается поверхность и примыкающий к ней слой воздуха. Осенью и зимой приземные инверсии толще и имеют более выраженный градиент.
  • скорости охлаждения, например если есть облачность, то часть инфракрасного излучения, с которым уходит тепло – отражается обратно на землю, и интенсивность охлаждения – заметно снижается (облачные ночи – теплые).
  • теплоемкости подстилающей поверхности поверхности имеющие большую теплоемкость и накопившие тепло за день – дольше охлаждаются и меньше охлаждают воздух (например теплые водоемы).
  • наличия ветра у земли, ветер перемешивает воздух и он интенсивнее охлаждается, слой (толщина) инверсии – заметно больше.

Инверсия подтекания – возникает когда холодный воздух стекает со склонов в долину, вытесняя более теплый воздух вверх. Воздух может стекать как с охлажденных склонов ночью, так и днем, например с ледников.

Инверсия подтекания

Инверсия адвективного переноса возникает при горизонтальном переносе воздуха. Например теплых воздушных масс на холодные поверхности. Или просто разных воздушных масс. Ярким примером – являются атмосферные фронты, на границе фронта будет наблюдаться инверсия. Другой пример, адвекция теплого (ночью) воздуха с водной поверхности на холодную сушу. Осенью такая адвекция часто визуализируется туманами. (их так и называют, адвективные туманы, когда влажный теплый воздух с воды переноситься на холодную сушу, или на более холодную воду и т.д.)

Возникает если внешние силы заставляют какой-то слой воздуха опускаться вниз. При опускании воздух будет сжиматься (так как атмосферное давление увеличивается) и адиабатически нагреваться, и может оказаться что нижележащие слои – имеют температуры ниже – возникнет инверсия. Этот процесс может происходить в разных условиях и масштабах, такая инверсия возникает например при оседании воздуха в антициклонах, при опускании воздуха в горно-долинной циркуляции, между облаком с осадками и окружающем воздухом рядом, или, например при фёне. Для ее возникновения нужно постоянное внешнее воздействие которое осуществляет перенос и опускание воздуха.

Вернемся теперь к мифам об инверсии.

Очень часто, парапланеристы говорят об инверсии там, где ее нет. Связанно это с тем, что мы привыкли любой слой который заметно тормозит и задерживает вертикальное перемещение воздуха называть инверсией хотя это – не так. Просто слой с маленьким градиентом, или изотермия – тоже быстро блокируют перемещение воздуха, но при этом не являются настоящей инверсией.

Второй момент возник благодаря тому, что в книгах, на иллюстрациях обычно для наглядности рисуют атмосферные градиенты или аэрологическую диаграмму в ПРЯМОУГОЛЬНЫХ СИСТЕМАХ КООРДИНАТ (АДП), где изотермы (линии постоянных температур) направлены снизу вверх перпендикулярно изобарам (или линиям одинаковой высоты). На таких рисунках инверсия, это любой участок кривой стратификации наклонённый ВПРАВО от вертикали снизу-вверх. Инверсия в таких координатах – легко видна.

Пример из книги Д. Пегана “Понять небо”.

На практике же, большинство пользуются , например с сайта meteo.paraplan.ru и тут уже, изотермы сами наклонены вправо, так что для того чтобы увидеть инверсию, нужно сравнить КРУТИЗНУ наклона кривой стратификации с изотермой! А сделать это на глазок при беглом просмотре – намного сложнее чем с диаграммной в АДП. Посмотрите на диаграмму внизу, у земли видна приземная небольшая инверсия. В слое 400м температура чуть выросла, (на высоте 600 метров она примерно на градус теплее чем у земли) градиент порядка -2.5 градуса К на км. А вверху, НЕ инверсия, а просто очень небольшой градиент, примерно +3.5 градусов К на км.

Инверсия и Не инверсия

Из-за того что не любой наклон вправо будет инверсия на АДК, пилоты часто употребляют это слово не там где надо, чем раздражают истинных метеорологов 🙂

В то же время расчетные, модельные аэрологические диаграммы могут не прогнозировать тонкие слои инверсии, так как усредняют температуру по слою, вместо того чтобы учесть 2 слоя, слой инверсии толщиной, например 100м с разницей температур на нижней и верхней границе в -1град, прилежащий слой в 900 метров с разницей температур +8 градусов. они просто нарисуют более толстый слой, 1 км – с о средним градиентом 7 градусов на этот километр. В то время как в реальности там будет несколько разных слоев.

Например как на приведенной ниже натурной диаграмме (АДП). На ней видно и приземной слой инверсии толщиной 200м + слой изотермии. И тонкий слой инверсии на высоте 2045м, и слой изотермии на высоте 3120м. Эти тонкие слои не рассчитываются модельно, но фактически – оказывают сильное влияние на термики.

Натурная АДП с шара- зонда

Резюме.

Не каждая часть кривой стратификации наклоненная вправо на АДК – является инверсией, будьте внимательны! Настоящую инверсию можно увидеть только на аэрологической диаграмме снятой по фактическим данным зондирования атмосферы. На “модельных” диаграммах, они могут быть не просчитаны, а лишь учтены в уменьшении градиента на каком-то слое. Однако в этом случае, об их существовании можно догадаться, если принимать во внимания возможные факторы возникновения инверсий.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Понравилась статья? Поделиться с друзьями: