Нервная система, органы чувств и поведение рыб — Гипермаркет знаний. Высшая нервная деятельность и поведение рыб Выполните лабораторную работу изучение реакции аквариумных рыб

Вопросы о чувствительности рыб, их поведенческих реакциях на поимку, боль, стресс постоянно поднимаются в научных специализированных изданиях. Не забывают об этой теме и журналы для рыболовов-любителей. Правда, в большинстве случаев в публикациях освещаются личные измышления по поводу поведения того или иного вида рыб в стрессовых для них ситуациях.

Эта статья продолжает тему, затронутую автором в минувшем выпуске журнала (№ 1 за 2004 г.)

Примитивны ли рыбы?

До конца XIX века рыболовы и даже многие ученые-биологи были твердо уверены, что рыбы - очень примитивные, глупые существа, которые не обладают не только слухом, осязанием, но даже развитой памятью.

Несмотря на публикацию материалов, опровергающих эту точку зрения (Паркер, 1904 - о наличии слуха у рыб; Ценек, 1903 - наблюдения за реакцией рыб на звук), даже в 1940-х годах некоторые ученые придерживались старых воззрений.

Сейчас общеизвестным является факт, что рыбы, как и другие позвоночные животные, прекрасно ориентируются в пространстве и получают информацию об окружающей их водной среде при помощи органов зрения, слуха, осязания, обоняния, вкуса. Причем, во многом органы чувств «примитивных рыб» могут поспорить даже с сенсорными системами высших позвоночных животных, млекопитающих. Например, по чувствительности к звукам, лежащим в диапазоне от 500 до 1000 Гц, слух рыб не уступает слуху зверей, а способность улавливать электромагнитные колебания и даже использовать свои электрорецепторные клетки и органы для связи и обмена информацией - вообще уникальная способность некоторых рыб! А «талант» многих видов рыб, в том числе и обитателей Днепра, определять качество пищи благодаря... прикосновениям рыбы к пищевому объекту жаберной крышкой, плавниками и даже хвостовым плавником?!

Другими словами, сегодня назвать представителей рыбьего племени существами «тупыми» и «примитивными» не сможет никто, особенно умудренные опытом рыболовы-любители.

Популярно о нервной системе рыб

Изучение физиологии рыб и особенностей их нервной системы, поведения в естественных и лабораторных условиях проводится уже давно. Первые крупные работы по изучению обоняния рыб, например, были выполнены в России еще в 1870-х годах.

Мозг у рыб обычно очень невелик (у щуки масса мозга в 300 раз меньше массы тела) и устроен примитивно: кора переднего мозга, которая служит у высших позвоночных ассоциативным центром, у костных рыб совершенно не развита. В строении мозга рыб отмечено полное разобщение мозговых центров разных анализаторов: обонятельным центром является передний мозг , зрительным - средний , центром анализа и обработки звуковых раздражителей, воспринимаемых боковой линией, - мозжечок . Информация, получаемая разными анализаторами рыбы одновременно, обрабатываться комплексно не может, поэтому рыбы «размышлять и сопоставлять» не умеют, а тем более «мыслить» ассоциативно.

Тем не менее, многие ученые считают, что костистые рыбы (к которым относятся почти все наши обитатели пресных вод - Р. Н. ) обладают памятью - способностью к образной и эмоциональной «психонервной» деятельности (правда, в самом зачаточном виде).

Рыбы, как и другие позвоночные животные, благодаря наличию рецепторов кожи могут воспринимать различные ощущения: температурные, болевые, тактильные (прикосновение). Вообще обитатели царства Нептуна - чемпионы по количеству у них своеобразных химических рецепторов - вкусовых почек. Эти рецепторы являются окончаниями лицевого (представлены в коже и на усиках ), языкоглоточного (в ротовой полости и пищеводе ), блуждающего (в ротовой полости на жабрах ), тройничного нервов. От пищевода до губ вся полость рта буквально усыпана вкусовыми почками. У многих рыб они находятся на усиках, губах, голове, плавниках, разбросаны по всему телу. Вкусовые почки информируют хозяина обо всех веществах, растворенных в воде. Рыбы могут ощущать вкус даже теми частями тела, где нет вкусовых сосочков - с помощью... своих кожных покровов.

Кстати, благодаря работам Коппания и Вейса (1922) выяснилось, что у пресноводных рыб (золотой карась) возможна регенерация поврежденного или даже перерезанного спинного мозга с полным восстановлением утраченных ранее функций.

Деятельность человека и условные рефлексы рыб

Очень важную, практически главенствующую, роль в жизни рыб играют наследственные и ненаследственные поведенческие реакции . К наследственным относят, например, обязательную ориентацию рыб головой на течение и движение их против течения. Из ненаследственных интересны условные и безусловные рефлексы .

В течение жизни любая рыба приобретает опыт и «учится». Изменение ее поведения в каких-либо новых условиях, выработка другой реакции - это образование так называемого условного рефлекса. Например, установлено, что при экспериментальной ловле ерша, голавля, леща удочкой у этих пресноводных рыб вырабатывался условный оборонительный рефлекс в результате 1-3 наблюдений за поимкой собратьев по стае. Интересный факт : доказано, что даже если тому же лещу на протяжении следующих, допустим, 3-5 лет его жизни рыболовные снасти на пути не будут попадаться, выработанный условный рефлекс (поимка собратьев) не забудется, а лишь затормозится. Увидев, как «взмывает» к поверхности воды засеченный собрат, умудренный опытом лещ сразу вспомнит, что надо делать в таком случае - удирать! Причем, для растормаживания условного оборонительного рефлекса достаточно будет только одного взгляда, а не 1-3-х!..

Можно привести огромное множество примеров, когда у рыб наблюдалось образование новых условных рефлексов в отношении к человеческой деятельности. Отмечено, что в связи с развитием подводной охоты многие крупные рыбы точно узнали дистанцию выстрела подводного ружья и не подпускают к себе подводного пловца ближе этой дистанции. Об этом впервые написали Ж.-И. Кусто и Ф. Дюма в книге «В мире безмолвия» (1956) и Д. Олдридж в «Подводной охоте» (1960).

Многие рыболовы прекрасно знают, что у рыб очень быстро создаются оборонительные рефлексы на крючковые снасти, на взмах удилищем, хождение рыболова по берегу или в лодке, на леску, приманку. Хищные рыбы безошибочно распознают многие виды блесен, «выучили наизусть» их колебание, вибрации. Естественно, чем крупнее и старше рыба, тем больше у нее накопилось условных рефлексов (читай - опыта), и тем сложнее ее поймать «старыми» снастями. Изменение техники рыбалки, применяемого ассортимента приманок на время резко увеличивают уловы рыболовов, но со временем (часто даже в течение одного сезона) те же щука или судак «осваивают» любые новинки и заносят их в свой «черный список».

Чувствуют ли рыбы боль?

Любой опытный рыболов, выуживающий из водоема разных рыб, уже на стадии подсечки может сказать, с каким обитателем подводного царства ему придется иметь дело. Сильные рывки и отчаянное сопротивление щуки, мощное «давление» ко дну сома, практическое отсутствие сопротивления судака и леща - умелыми рыбаками эти «визитные карточки» поведения рыб определяются сразу. Среди любителей рыбалки бытует мнение, что сила и продолжительность борьбы рыбы напрямую зависит от ее чувствительности и степени организации ее нервной системы. То есть подразумевается, что среди наших пресноводных рыб есть виды более высокоорганизованные и «нервно-чувственные», а также имеются рыбы «грубые» и нечувствительные.

Такая точка зрения чересчур прямолинейна и по сути неверна. Чтобы знать наверняка, чувствуют ли наши обитатели водоемов боль и как именно, обратимся к богатому научному опыту, тем более, что в специализированной «ихтиологической» литературе еще с XIX-го столетия приводятся подробнейшие описания особенностей физиологии и экологии рыб.

ВСТАВКА. Боль - это психофизиологическая реакция организма, возникающая при сильном раздражении чувствительных нервных окончаний, заложенных в органах и тканях.

БСЭ, 1982 г.

В отличие от большинства позвоночных, рыбы не могут сообщать об ощущаемой ими боли криком или стоном. О болевом чувстве рыбы мы можем судить только по защитным реакциям ее организма (в том числе и по характерному поведению). Еще в 1910 году Р. Гофером было установлено, что щука, находящаяся в покое, при искусственном раздражении кожи (уколе) производит движение хвостом. Пользуясь таким методом, ученый показал, что «болевые точки» у рыбы находятся по всей поверхности тела, однако наиболее густо они располагались на голове.

Сегодня известно, что вследствие низкого уровня развития нервной системы болевая чувствительность у рыб невысока. Хотя, несомненно, засеченная рыба боль чувствует (вспомните о богатой иннервации головы и ротовой полости рыб, вкусовых почках! ). Если крючок вонзился в жабры рыбы, пищевод, окологлазничную область, ее болевые ощущения в этом случае будут сильнее, чем если бы крючок пробил верхнюю/нижнюю челюсть или зацепился за кожу.

ВСТАВКА. Поведение рыб на крючке зависит не от болевой чувствительности конкретной особи, а от индивидуальной ее реакции на стресс.

Известно, что болевая чувствительность рыб сильно зависит от температуры воды: у щуки скорость проведения нервных импульсов при 5ºС была в 3-4 раза меньше, чем скорость проведения возбуждения при 20ºС. Другими словами, летом вылавливаемой рыбе в 3-4 раза больнее, чем зимой.

Ученые уверены, что яростное сопротивление щуки или пассивность судака, леща на крючке во время вываживания лишь в малой степени обусловлены болью. Доказано, что реакция конкретного вида рыб на поимку больше зависит от тяжести полученного рыбой стресса.

Рыбалка как смертельный стрессорный фактор для рыб

Для всех рыб процесс их поимки рыболовом, вываживание являются сильнейшим стрессом, превышающим порой стресс от бегства от хищника. Для рыболовов, исповедующих принцип «поймал-отпусти» буде немаловажным знать следующее.

Стрессорные реакции в организме позвоночных животных вызываются катехоламинами (адреналином и норадреналином) и кортизолом , которые действуют в течение двух различных, но перекрывающих друг друга отрезков времени (Смит, 1986). Изменения в организме рыб, вызванные выбросом адреналина и норадреналина, происходят менее чем через 1 секунду и длятся от нескольких минут до часов. Кортизол вызывает изменения, начинающиеся менее чем через 1 час и длящиеся порой недели и даже месяцы!

Если стрессовое воздействие на рыб длительно (например, при долгом вываживании) или очень интенсивно (сильный испуг рыбы, усугубленный болью и, например, подъемом с большой глубины), в большинстве случаев пойманная рыба обречена. Она обязательно погибнет в течение суток, даже будучи отпущенной на волю. Это утверждение неоднократно доказывалось исследователями-ихтиологами в естественных условиях (см. «Современную рыбалку», № 1 за 2004 г.) и экспериментально.

В 1930-1940-х гг. Хомер Смит констатировал летальную стрессовую реакцию морского удильщика на вылов и помещение его в аквариум. У испуганной рыбы резко увеличивалось выделение с мочой воды из организма, и спустя 12-22 часа она погибала... от обезвоживания. Смерть рыб наступала намного быстрее, если они были травмированы.

Спустя несколько десятилетий скрупулезным физиологическим исследованиям были подвергнуты рыбы из американских рыбоводных прудов. Стресс у рыб, вылавливаемых во время плановых мероприятий (пересадка производителей и др.), был обусловлен повышенной активностью рыб во время преследования неводом, попыток вырваться из него, кратковременного нахождения на воздухе. У отлавливаемых рыб развивалась гипоксия (кислородное голодание) и, если еще у них наблюдалась потеря чешуи, то последствия в большинстве случаев были летальными.

Другие наблюдения (за ручьевой форелью) показали, что если рыба при поимке теряет более 30% чешуи, она погибает в первые же сутки. У потерявших часть чешуйного покрова рыб плавательная активность угасала, особи теряли до 20% массы тела и рыба тихо погибала в состоянии слабого паралича (Смит, 1986).

Некоторые исследователи (Выдовски и др., 1976) отмечали, что при ловле форелей удочкой рыбы подвергались меньшему стрессу, чем при потере чешуи. Стрессорная реакция протекала более интенсивно при высоких температурах воды и у более крупных особей.

Таким образом, пытливый и научно «подкованный» рыболов, зная особенности нервной организации наших пресноводных рыб и возможности приобретения ими условных рефлексов, обучаемости, их отношение к стрессовым ситуациям, всегда может планировать свой отдых на воде и строить взаимоотношения с обитателями Нептунова царства.

Искренне надеюсь также, что настоящая публикация поможет многим рыболовам эффективно использовать правила честной игры - принципа «поймал-отпусти»...

ИЗУЧЕНИЕ ПОВЕДЕНИЯ И АДАПТАЦИИ РЫБ К ВНЕШНИМ УСЛОВИЯМ

Изучение поведения рыб - одна из важнейших задач ихтиологии и безмерное поле проведения интереснейших и увлекательнейших экспериментов и исследований. В частности, сохранение запасов ценных проходных и полупроходных рыб в связи с гидростроительством невозможно без успешного изучения поведения этих рыб на нерестилищах, в зоне плотин и рыбопропускных сооружений. Не менее важно предотвращение засасывания рыб в водозаборные сооружения. В этих целях уже используются или прошли испытания такие устройства, как пузырьковая завеса, электрорыбозаградители, механические решетки и т. д., но пока применяемые устройства не достаточно эффективны и экономичны.

Для успешного развития промысла и совершенствования орудий лова крайне важны сведения о поведении рыб в зоне облова, зависимости от гидрометеобстановки и гидрологических факторов, о суточных и периодических вертикальных и горизонтальных миграциях. При этом рациональная организация промысла не возможна без изучения распределения и поведения разновозрастных групп. Сроки и мощность миграций, подходы рыб на места нереста, нагула, зимовки во многом определяются изменениями условий внешней среды и физиологического состояния особей.

Значение органов чувств в восприятии абиотических и биотических сигналов

Изучение поведения рыб проводится на основании регулярных натурных наблюдений, экспериментов в лабораторных условиях и анализа данных о взаимодействии с внешней средой высшей нервной деятельности изучаемых объектов. В процессе взаимодействия с окружающей средой у рыб проявляются три способа ориентации:

Пеленгация - воспроизведение сигнала, идущего от внешнего мира;

Локация - посылка сигналов и восприятие их отражений;

Сигнализация - посылка сигнала одними особями и восприятие их другими.

Восприятие абиотических и биотических сигналов, влияющих на поведение рыб, происходит посредством органов чувств, среди которых выделяют прежде всего зрение, слух, боковую линию, обоняние. Особое значение имеет рефлекторная деятельность рыб.

Зрение рыб

По сравнению с воздушной средой вода, как среда обитания рыб, менее благоприятна для зрительного восприятия. Освещенность водных слоев проникающими в воду солнечными лучами находится в прямой зависимости от количества растворенных и взвешенных частиц, которые обуславливают мутность воды, определяют границы действия органов зрения рыб. В морской воде освещенность достигает глубины 200-300 м, а в пресных водоемах лишь 3-10 м. Чем глубже в воду проникает свет, тем глубже проникают и растения. Прозрачность воды чрезвычайно различна. Она больше вдали от берегов и уменьшается во внутренний морях. Чем больше в воде живых организмов, тем менее вода прозрачна. Очень прозрачные воды морей, особенно красивого насыщенного синего цвета, - это воды, скудные жизнью. Самые прозрачные моря - Саргассово и Средиземное.

Рыбы обладают цветным зрением. Для особей, обитающих в освещенной зоне, оно имеет очень большое значение и обусловливает их поведение. Питание планктонофагов, в том числе молоди рыб, осуществляется благодаря хорошо развитым органам зрения. Присущая рыбам острота зрения позволяет, в зависимости от освещенности и прозрачности воды, различать предметы на расстоянии до нескольких десятков метров. Все вышеперечисленное имеет большое значение для пищевых и оборонительных реакций рыбы. Доказано, что образование и распад стай также связаны с освещенностью водной среды.

Движение рыб против течения контролируется органами зрения, реже органами обоняния. На этом основаны попытки направить рыб в рыбоходах вслед за макетами. С освещенностью связаны ритмы и активность питания.

Явление вертикальной зональности и преобладающей окраски животных и растений обусловлено неравномерностью проникновения лучей разной длины волны в толщу воды. Животные очень часто бывают окрашены в цвет той части спектра, которая проникает на данную глубину, в результате чего приобретает защитную окраску, кажутся незаметными. В верхних горизонтах животные большей частью окрашены в буровато-зеленоватые цвета, а глубже - в красные. На больших глубинах, лишенных света, животные большей частью окрашены в черный цвет или совсем лишены окраски (депигментированы).

Слух.

Акустические свойства воды значительно сильнее, чем воздушной среды. Звуковые колебания идут быстрее и проникают дальше. Установлено, что роль звуковой сигнализации увеличивается с наступлением сумерек, по мере уменьшения зрительного восприятия. Центр звукового восприятия - внутреннее ухо рыб. Восприятие ультразвуковых колебаний рыбам не свойственно, но зато они реагируют на низкочастотные звуки. Реакция на ультразвук обнаруживается только при действии мощного источника на небольшом расстоянии и скорее может быть отнесена к болевому ощущению кожи.

При имеющей место реакции на звуковые сигналы, рыбы направленно (рефлекторно) реагируют, прежде всего, на пищевые раздражители или сигнал опасности. В черте города рыбы довольно быстро привыкают к шумам, даже к постоянным очень громким звукам. Возможно поэтому с помощью звуковых сигналов не удалось организовать направленное движение лососей в реки или отпугнуть от сточных вод. Даже вблизи аэродромов рыбы не меняют поведения и продолжают клевать на удочку. Отмечено, что прерывистый звук действует на рыб сильнее, чем постоянный.

Боковая линия

В первую очередь следует отметить функциональную связь боковой линии с органами слуха. Установлено, что нижняя часть звуковых колебаний (частоты 1-25 Гц) воспринимаются боковой линией. Значение боковой линии изучено далеко не полностью. Основной функцией боковой линии является восприятие гидродинамических полей и струй воды. Гидродинамические поля от больших источников, вызывающих у рыб оборонительную реакцию, обычно воспринимаются на значительном расстоянии. Однако в районах образования быстрых течений в реках ниже плотины многие рыбы быстро привыкают к изменившимся условиям.

Гидродинамические поля, вызываемые от движения мелких тел, обычно вызывают у рыб пищевую реакцию. Рыбы с помощью боковой линии точно ориентируются для прицельного броска на сравнительно небольшое расстояние в несколько десятков сантиметров.

С помощью боковой линии сумеречные, ночные и зарослевые хищники ориентируются, достигая добычу. Молоди рыб и планктонофагам боковая линия служит для обнаружения хищника и общей ориентации в среде.

Обоняние рыб

Следует учесть свойство воды как хорошего растворителя. Установлено, что рыбы реагируют на ничтожно малые количества растворенных в воде веществ. С помощью запахов рыбаки привлекают рыбу. В то же время другие вещества, например настойка кожи хищных рыб и морских млекопитающих, действуют отпугивающее.

Восприятие растворенных в воде веществ, по-видимому, связано с органами вкуса. Проходные рыбы находят путь из моря в реки с помощью органов обоняния. Несомненно, что рыбы способны к запоминанию. Этим объясняется хоминг (от англ. home - ≪дом≫) - способность рыб заходить именно в те реки, протоки или гирла, из которых они вышли мальками после развития из икры.

Высшая нервная деятельность и поведение рыб

Способность рыб приобретать условные рефлексы в сочетании с безусловными рефлексами дает возможность управлять их поведением. Условные рефлексы вырабатываются у рыб медленнее, чем у высших позвоночных, и быстро угасают, если не находят подкрепления теми же факторами, которые способствовали их образованию, но способны самопроизвольно возникать через определенное время.

Особую роль в создании и угасании рефлексов играет температура воды. Имеются данные (Юдкин, 1970), что у осетровых условные рефлексы осенью вырабатываются значительно хуже, чем летом. У золотой рыбки понижение температуры воды ниже +13 °С и повышение свыше +30 °С вызывало исчезновение всех ранее приобретенных рефлексов. Все это становится вполне понятно, если учесть, что жизнедеятельность рыб, животных с пониженной температурой крови, зависит от температуры воды.

Условные рефлексы могут возникать у рыб в виде подражания. Необученные рыбы подражают другим, у которых условные рефлексы образовались после соответствующего обучения или приобретения жизненного опыта. Весьма показательно в этом отношении изменение поведения рыб в зоне обловов активных и даже стационарных орудий лова. Часто достаточно одной особи, обнаружившей лазейку для выхода из орудия лова, чтобы его покинула большая часть стаи (например, хамса в ставных и закидных неводах).

Пиленгас способен преодолевать сетные порядки, переваливаясь через верхнюю подбору, выпрыгивать и даже ползти, извиваясь по наклонному полотну при выборке закидных неводов.

Летчики-наблюдатели, длительное время занимавшиеся наводкой промысловых судов на косяки рыбы, отмечали постепенное изменение поведения хамсы: изменение направления движения и выход из кошельковых неводов, ≪приседание≫, рассеивание и т.д.

Не идентичны поведение и быстрота реакций рыб при разном физиологическом состоянии. Жирная рыба быстрее образует скопления, которые усидчивее, чем образованные физиологически ослабленными особями. Часто рыбы реагируют не только на резкие изменения условий, но и на складывающиеся тенденции изменения факторов среды. При слабом же росте температуры воды скопления могут просто распасться, несмотря на то, что температура будет оставаться в пределах оптимальной для ведения промысла.

Большое значение имеет формирование рыб в стаи. Оборонительное значение стаи у рыб так же велико, как и у птиц. Также, охватывая большее водное пространство, стая быстрее находит места откорма, чем отдельные особи.

Наблюдения показали у некоторых видов рыб наличие вертикальных миграций. Так, на ньюфаундлендской банке морской окунь с заходом солнца в течение 60-90 мин поднимается с глубин 500-600 м на глубины 300-400 м. Ночью окунь держится в 200 м от поверхности, а к утру опускается и днем находится у дна. Подобным образом ведут себя треска и пикша. В Черном море вертикальные миграции наиболее свойственны хамсе и ставриде, опускающимся в нижние горизонты в дневные часы и поднимающимся к поверхности в ночные. Такое поведение их связано с движениемпланктона. Для многих рыб нахождение на разной глубине и на разном удалении от берега характерно в различные периоды жизненного цикла.

Все перечисленное имеет непосредственное отношение к поведению рыб. Это необходимо учитывать исследователю для более эффективного влияния на поведение рыб в зонах облова, где необходимо выявлять ведущие факторы для каждого конкретного случая. В настоящее время знание особенностей поведения приобретает особое значение для успешного развития промысла. И связано это, прежде всего, с увеличением интенсивности рыболовства, падением запасов и ростом экономической себестоимости выполнения работ.

Изучение особенностей поведения в зависимости от факторов среды и физиологического состояния рыб позволяет исследователям и промысловикам тактически регулировать лов с повышением его эффективности. Знание биологии промыслового объекта позволяет организовать лов в периоды максимальных концентраций, на глубинах наибольшего распределения и при температурах воды, когда скопления наиболее устойчивы. Одним из инструментов таких исследований является многофакторный Коррелятивный анализ наиболее значимых связей океанологических и биологических критериев для построения математических моделей, описывающих явления и процессы жизненного цикла рыб. Достаточно давно и хорошо на ряде бассейнов зарекомендовали себя прогнозы сроков осенних миграций, образования и распада зимовальных скоплений и начала промысла массовых промысловых рыб. Это способствует сокращению непроизводительных простоев судов и повышению уровня интенсивности лова.

В качестве примеров таких моделей можно привести рассчитанные в АзНИИРХ уравнения регрессии для прогнозирования сроков осенней миграции азовской хамсы через Керченский пролив в Черное море.

Начало хода:

У = 70,41 +0,127 X 1 ,-0,229 Х 2 ,

У = 27,68- 0,18 Х 2 - 0,009 (Н).

Начало массовой миграции:

У, = 36,01 +0,648 Х 3 -0,159 Х 2 ,

где У и У 1 - даты предполагаемого начала осенней миграции и массового хода (отсчет от 1 сентября); X 1 и Хз - даты окончательного перехода температуры воды через +16 и +14 °С (соответственно) в южной части Азовского моря (отсчет от 1 сентября); Х 2 - количество рыб (в %) в популяции с коэффициентом упитанности 0,9 и более по состоянию на 1 сентября, Н -продолжительность нагула (градус/дни) после нереста на 1 сентября.

Ошибка прогнозов сроков начала миграций по представленным моделям не превышает 2-3 дней.

>>Нервная система, органы чувств и поведение рыб

§ 40. Нервная система, органы чувств и поведение рыб

Спинной мозг.

Центральная нервная система рыб, как и у ланцетника , имеет вид трубки. Ее задний отдел - спинной мозг расположен в канале позвоночника, образованном верхними телами и дугами позвонков. От спинного мозга между каждой парой позвонков вправо и влево отходят нервы, управляющие работой мышц тела и плавников и органов, расположенных в полости тела 77 .

По нервам от чувствительных клеток на теле рыбы в спинной мозг поступают сигналы о раздражении.

Головной мозг.

Передняя часть нервной трубки рыбы и других позвоночных животных видоизменена в головной мозг, защищенный костями черепной коробки. В головном мозге позвоночных различают отделы: передний мозг, промежуточный мозг, средний мозг, мозжечок и продолговатый мозг. Все отделы головного мозга имеют большое значение в жизнедеятельности рыбы. Например, мозжечок управляет координацией движений и равновесием животного. Продолговатый мозг постепенно переходит в спинной мозг. Он играет большую роль в управлении дыханием, кровообращением, пищеварением и другими важнейшими функциями организма.

Органы чувств позволяют рыбам хорошо ориентироваться в окружающей среде. Важную роль при этом играют глаза. Окунь видит только на сравнительно близком расстоянии, но различает форму и цвет предметов.

Впереди каждого глаза окуня помещается по два отверстия - ноздри, ведущие в слепой мешок с чувствительными клетками. Это орган обоняния.

Органы слуха снаружи не видны, они помещаются справа и слева черепа, в костях задней его части. Благодаря плотности воды звуковые волны хорошо передаются через кости черепа и воспринимаются органами слуха рыбы. Опыты показали, что рыбы могут слышать шаги человека, идущего по берегу, звон колокольчика, выстрел.

Органы вкуса - чувствительные клетки. Они расположены у окуня, как и других рыб , не только в ротовой полости, но и разбросаны по всей поверхности тела. Там же находятся и осязательные клетки. У некоторых рыб (например, у сома, сазана, трески) на голове есть осязательные усики.

Для рыб характерен особый орган чувства - боковая линия. Снаружи тела виден ряд отверстий. Эти отверстия связаны с каналом, расположенным в коже. В канале находятся чувствительные клетки , соединенные с нервом, идущим под кожей.

Боковая линия воспринимает направление и силу тока воды. Благодаря боковой линии даже ослепленная рыба не натыкается на препятствия и способна ловить движущуюся добычу.

Рефлексы рыб.

Наблюдая поведение окуня в аквариуме, можно заметить, что ответы на раздражение у него могут проявляться двояко.

Если к окуню прикоснуться, он моментально метнется в сторону. Столь же быстр его ответ на вид пищи. Жадный хищник, он стремительно кидается на свою добычу (мелких рыб и различных беспозвоночных - ракообразных, червей). При виде добычи возбуждение идет по зрительному нерву в центральную нервную систему окуня и сейчас же по двигательным нервам возвращается от нее к мускулам. Окунь плывет к жертве и захватывает ее. Механизм подобных ответов организма на раздражение врожденный - такие рефлексы называют, как вы уже знаете, врожденными или безусловными. У всех животных одного вида безусловные рефлексы одинаковы. Они передаются по наследству.

Если кормление рыб в аквариуме сопровождается какими-либо действиями (условиями), например зажиганием лампочки или постукиванием по стеклу, то через некоторое время такой сигнал начинает привлекать рыб сам по себе, без подкормки. На подобные сигналы у рыб вырабатываются приобретенные, или условные, рефлексы, возникающие при определенных условиях.

В отличие от врожденных рефлексов условные рефлексы не передаются по наследству. Они индивидуальные и вырабатываются в течение жизни животного.

1. С помощью рисунков 71 и 77 установите, в чем различие строения центральной нервной системы окуня и ланцетника.
2. Какие органы чувств развиты у рыб?
3. Что такое безусловный рефлекс? Приведите примеры.
4. Чем отличаются условные рефлексы от безусловных?

Биология: Животные: Учеб. для 7 кл. сред. шк. / Б. Е. Быховский, Е. В. Козлова, А. С. Мончадский и др.; Под. ред. М. А. Козлова. - 23-е изд. - М.: Просвещение, 2003. - 256 с.: ил.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Рыбы отличаются исключительной сообразительностью — это известно уже давно. Так, многие из нас, наверняка, слышали истории о язях и щуках, которые открывают крышки у садков; о сазанах, которые хвостом сбивают насадку с крючка и спокойно ею питаются; о лещах, поднявшихся по лесе на поверхность и скрывшихся в глубине, увидев рыбака; о брызгуне, который сбивает насекомых струей воды.
И.П. Павлов провел много наблюдений и экспериментов, в ходе которых обнаружил, что всем живым существам присущи безусловные и условные рефлексы. Безусловно-рефлекторная деятельность заложена в рыбах на генетическом уровне.
Пищевой рефлекс играет главную роль в жизни рыб. Так, рыб-хищников привлекают движения жертвы: на неподвижную блесну рыба не обратит внимание, а блесна, максимально похоже повторяющая движение рыбы, несомненно, не останется незамеченной.
Положение жертвы также играет важную роль. В некоторых водоемах щука может схватить мертвую рыбу, насаженную на крючок, но она ни при каких обстоятельствах не возьмет рыбу, плавающую брюхом кверху. Поэтому опытные рыбаки вводят рыбке кусочек свинца в брюшко через рот перед насадкой на крючок. В током случае она будет иметь правильное горизонтальное положение при ловле на жерлицы или кружки.
У нехищных рыб пищевой рефлекс срабатывает и на вид, и на запах жертвы.
Поведение разных рыб при охоте также разнообразно: щука и окунь обычно нападают из засады; быстро плавающие — лосось, тунец — догоняют добычу.
Врожденные рефлексы заботы о потомстве очень важны для сохранения вида. Например, лососи прогоняют перед нерестом с нерестилищ всю рыбу и закапывают икринки в гальку и песок. Сомы охраняют свою икру до момента выклева мальков, колюшки самец строит гнездо для икры и также охраняет мальков.
Стремление к свободе — это тоже безусловный рефлекс. Так, если рыбу посадить в аквариум, то она может перестать есть и умереть от голода. В данном случае рефлекс свободы пересиливает пищевой рефлекс.
Оборонительный рефлекс заставляет рыбу пугаться шума, тени, запаха. Наименее осторожны щука, окунь, налим. Наиболее — лещь, сазан, форель.
В большинстве случаев рыбы спасаются бегством от опасности, но некоторые пытаются испугать врага. Иглобрюх и куткутья принимают форму шара, раздуваясь. Ерш и окунь поднимают вверх спинной плавник, скат пускает в ход кинжалы.
Исследовательский рефлекс также защищает рыбу от опасности. Заметив посторонний предмет, рыба приглядывается, прислушивается, пытается определить, не грозит ли ей опасность. Но, не приблизившихся к предмету, не получится выяснить, что это такое. Поэтому рыба, преодолевая страх, подходит ближе.
Данный инстинкт животных описан в одном из романов Майн-Рида: у охотника закончились продукты, а ему предстоял длинный путь. Он увидел стадо антилоп, однако подобраться к ним на расстояние выстрела, не спугнув их, не получилось бы. Тогда он встал на руки и насал размахивать ногами в воздухе. Это привлекло антилоп, и они подошли ближе, повинуясь исследовательскому инстинкту. Тогда охотник быстро вскочил на ноги, схватил ружье и застрелил одно из животных.
Аналогично поступают и рыбы. У некоторых рыб проявляется этот инстинкт при опущенной в воду электрической лампочки.
Но не все инстинкты рыб являются врожденными, многие были приобретены. Когда-то лососи метали икру в океане, но поскольку в реках меньше врагов и условия более благоприятны, то инстинкт изменился — они стали откладывать икру в реках.
Ладожская форель тоже заходит в реки, причем поднимается вверх по течению.
Раньше сырть поднималась на нерест из Финского залива в реку Нарову. Однако после возведения плотины на Нарове часть стада рыб оказадась отрезанной от залива, освоилась там и до сих пор живет и размножается в Великом и Чудском озере, в реке Нарове.

Но не всегда инстинкты рыб меняются в зависимости от обстоятельств. Так, постройка Волховской электростанции перегородила путь сигам к их нерестилищам, и привела практически к полному исчезновению вида.
Исследуя условные рефлексы рыб, было поставлено много опытов. Например, если подвесить в аквариуме красную бусинку на нитке, то рыбы ее «попробуют» обязательно. В этот же момент нужно бросить в кормовой угол их любимую еду, И повторять эти действия несколько раз. Вскоре рыбы, подергав за бусину, будут сами приплывать в кормовой угол, даже если им не предложить пищи. Если заменить красную бусинку на зеленую, не давая корма, то рыба к ней не притронется. Но переучить их можно — заставить схватывать зеленую бусину и не притрагиваться к красной.
Если вырезать два треугольника из картона — один большой, второй маленький и приложить стеклу аквариума при кормлении один из них, а после кормления второй, то вскоре рыбы будут подплывать к треугольнику того размера, который прикладывали при кормлении даже если им не будут давать пищу. А на второй не будут обращать внимание. Таким образом рыб можно обучить различать буквы алфавита.
На звук тоже можно выработать условный рефлекс. Если при кормлении рыбы слышат звук звонка, то они будут подходить на звонок и без пищи. Опытноым путем также было установлено, что рыбы могут различать тон звуков.
Более осторожно ведет себя рыба , побывавшая на крючке. Поэтому в диких водоемах рыба охотнее берет приманку, чем в водоемах, часто посещаемых рыбаками.
И, соответственно, чем старше рыба, тем она осторожнее. Понаблюдаем за стайкой голавлей возле устоев моста. Ближе к поверхности плавают маленькие голавлики, а в глубине — крупные рыбы. Если в воду бросить кузнечика, то — всплеск — и кузнечик окажется во рту у крупной рыбы. А если проткнуть кузнечика соломинкой и бросить в воду, то крупный голавль его не возьмет, а мелочь будет теребить его.

Для того, чтобы рыба стала бояться, ей необязательно самой побывать на крючке, одна попавшаяся на крючок рыба способна напугать всю стаю. Иногда рыбы пользуются опытом соседей: Если косяк лещей окружить неводом, то, очутившись на дне, они мечутся во всех направлениях, но как-только одна из рыб проскользнет под тетивой, воспользовавшись неровностью дна, так за ней устремится вся стая.
Тот факт, что рыбы перенимают опыт соседей, подтвердили и опыты. Аквариум перегородили стеклом на две половины. в одну из которых посадили несколько верховок. В углу аквариума зажгли красную лампу, которая привлекала рыб. Как только рыбы приближались к лампе, их ударяло током, от чего они бросались в рассыпную. После нескольких опытом рыбы убегали от лампы сразу после ее включения, даже без тока. Затем во вторую часть аквариума подсадили еще двух верхоловок, никогда не испытывающих удара током. Но они также убегали от красной лампы, следуя примеру соседей.
Условные рефлексы, как правило, «забываются», Но они могут превратиться и во врожденные, если условия, при которых они возникают, повторяются из поколения в поколение.
Голавль в большинстве рек питается червями, насекомыми или личинками. Но в реку Неву попадают всякие пищевые отходы, поэтому голавль стал там практически всеядным. Там его ловят на удочку , на крючок насаживая колбасу, сыр или даже селедку. В реках, расположенных вдали от городов, голавль к такой насадке даже не притронется. Таким образом изменение условий питания вызвало превращение временного пищевого рефлекса в постоянный.
Как мы видим, ум, сообразительность и хитрость рыб — это всего лишь врожденные и приобретенные инстинкты.

Понравилась статья? Поделиться с друзьями: