В чем измеряется ток и напряжение. Что такое напряжение и ток

Эпоха научно-технического прогресса требует измерять всё. Электрические сети не являются исключением. Для проведения этих измерений важно знать, в каких единицах измеряется напряжение. В самой распространённой системе СИ единица измерения напряжения обозначается 1 Вольт или сокращённо – 1В. Может также обозначаться 1V. Это обозначение выбрано в честь физика из Италии Алессандро Вольта.

Что такое электрическое напряжение

Оно не может существовать само по себе, как вес. Есть два случая, требующих его измерения:

  • Между разными узлами электрической цепи или концами проводника. 1 Вольт – это такой потенциал, при котором ток величиной 1 Ампер выделяет 1 Ватт мощности;
  • Измерение напряженности электростатического поля проводится между двумя точками поля. Единица напряжения 1 Вольт – это такой потенциал, при котором заряд 1 Кулон совершает работу 1 Джоуль.

Эффект Джозефсона

С 1990 года есть ещё одно определение электрического напряжения. Его значение связано с эталоном частоты и цезиевыми часами. При этом используется нестационарный эффект Джозефсона6 при облучении специальной матрицы излучением на частоте 10-80 ГГц на ней появляется потенциал, величина которого не зависит от условий эксперимента.

Действующее значение напряжения

Определение величины электрического потенциала между участками сети производится по количеству тепла или работе, совершённой за определённое время. Но это справедливо только для постоянного тока. Переменное напряжение имеет синусоидальную форму. В максимуме амплитуды оно максимально, а при переходе от положительной полуволны к отрицательной равно нулю.

Поэтому для расчётов используется среднее значение, которое называется “действующее значение”, при расчетах приравнивающееся к постоянному той же величины.

От максимального оно отличается в 1,4 раза или √2. Для сети 220В максимальное значение составляет 311В. Это имеет значение при выборе конденсаторов, диодов и других элементов электронных схем.

Определение величины напряжения

Чем измеряется напряжение? Это производится специальным прибором – вольтметром. Он может иметь различную конструкцию, быть цифровым или стрелочным, но его сопротивление должно быть максимально возможным, а ток – минимальным. Это необходимо для того, чтобы свести к минимуму влияние прибора на сеть и потери в проводах, идущих от источника питания к вольтметру.

Сеть постоянного тока

Эти измерения производятся магнитоэлектрическими приборами. В последнее время широко используются устройства с цифровым табло.

Самый простой способ – прямое подключение прибора к месту измерения. Это возможно при соблюдении ряда условий:

  • Предел измерения больше ожидаемого максимума. Если оно до начала измерений неизвестно, то следует выбрать наибольший предел и последовательно его уменьшать;
  • Соблюдение полярности подключения. При неправильном подключении стрелка отклонится в обратную сторону, а цифровое табло покажет отрицательную величину.

Если предел измерений недостаточен, то его можно расширить при помощи добавочного сопротивления. Оно может быть внешним или внутренним. Можно использовать несколько сопротивлений и переключать их для изменения предела прибора. Так устроен мультиметр.

Сеть переменного тока

Напряжение измеряется в сети переменного электрического тока приборами всех типов, кроме магнитоэлектрических. Эти устройства можно использовать, только подключив их к выходу выпрямителя.

Для увеличения предела измерения есть несколько способов. Для этого к прибору подключается дополнительно одно из устройств:

  • добавочные сопротивления;
  • при неизменной частоте сети вместо сопротивления используются конденсаторы;
  • самый распространённый вариант – применение трансформатора напряжения.

Требования к измерительным устройствам и дополнительным приспособлениям такие же, как к устройствам постоянного тока.

В современном быту, строительстве и других сферах жизни человека огромную роль играет энергия, которая необходима для приведения в движение различных механизмов, производственных станков и инструментов. Электрическое напряжение, или как его принято называть в народе ток, занимает первое место среди ресурсов снабжения, поэтому человек во многом зависит от бесперебойной подачи электричества правильного номинала. В данной статье рассмотрено определение электрического напряжения, его формула, а также, от чего зависит и на что влияет данный показатель.

Что такое напряжение

Электрическое напряжение – это работа, которая необходима для подачи заряда электрическим полем от поставщика до потребляемого прибора по проводам или без них. Проще говоря, это величина силы, потраченной для доставки определенного заряда тока по проводнику от одного конца на другой. Без напряжения не будет перемещения заряженных частиц, а, следовательно, ток не будет поступать к потребителю, номинальная величина в цепи будет равна нулю.

Электрическим током заряжены все элементы и предметы, которые окружают человека, разница лишь в величине напряжения – у некоторых вещей данный показатель минимален и фактически не заметен, у других – наличие тока более выражено. За долгие годы исследований ученые изобрели множество приборов, которые способны вырабатывать электрический ток различного напряжения и силы, начиная от малогабаритных и заканчивая крупными электростанциями, питающими целые города. Электрическое напряжение напрямую связано с силой тока: чем выше напряжение, тем выше будет величина силы тока.

Для более точного понимания определения напряжения тока необходимо разобраться в физике образования электричества в целом. Откуда берется электрический ток?

Все предметы и вещества состоят из атомов с положительным зарядом, число которых равно числу вращающихся вокруг них отрицательно заряженных частиц. Проще говоря, количество электронов равно количеству нейтронов. Чтобы возникло напряжение в сети, из ядра извлекаются некоторые электроны, возникает разряжение, и оставшиеся частицы пытаются восполнить пробел путем притяжения электронов снаружи, возникает положительный заряд. Если же добавить электроны в атом, возникнет переизбыток, и образуется отрицательное энергетическое поле.

В результате такого взаимодействия возникают положительный и отрицательный потенциалы, и чем больше контакта у этих элементов, тем выше сила и напряжение электрического тока. При соединении указанных потенциалов образуется энергетическое поле, которое увеличивается при повышении количества заряженных атомов внутри себя.

Формула для вычисления напряжения тока выглядит следующим образом:

  • U – это само напряжение,
  • A – работа, необходимая для перемещения заряда,
  • Q – отрезок расстояния, на которое перемещается заряженный атом.

Таким образом, можно сделать вывод, что сила тока на протяжении всей цепи будет одинаковой, а напряжение на каждом из участков будет разным, в зависимости от нагрузки на данный отрезок. Как известно, энергия не возникает из ниоткуда и не пропадает в неизвестном направлении, поэтому при повышении напряжения на определенном участке провода избыточный ток выражается в тепловой нагрузке, проще говоря, материал, из которого изготовлен проводник, начинает греться.

От чего зависит напряжение

Существует три основных фактора, влияющих на норматив напряжения электрических токов, среди которых:

  1. Материал, из которого выполнен проводник. Для решения определенных задач существуют различные типы проводов, чаще всего можно встретить медные или алюминиевые изделия различного сечения и наружной оболочки. Наружная обмотка таких проводов бывает также из множества материалов, защитных и декоративных, например, ПВХ пленка или резиновая защита. Такая обработка позволяет использовать проводку в любых условиях, в том числе для организации наружного освещения;
  2. Температуры использования проводника;
  3. Уровня сопротивления электрического тока на данном участке. Данная величина зависит от свойств проводимости кабеля или иного предмета, подключенного к сети, и способности к беспрепятственному пропуску атомов через себя. Существуют материалы с нулевым сопротивлением или полностью диэлектрические, то есть не способные проводить электрический ток любого напряжения.

Ток и его напряжение напрямую зависят друг от друга, поэтому и их обозначения одинаковы. Напряжение тока измеряется в Вольтах и обозначается буквой В. Вольт выражается в разности положительного и отрицательного потенциалов на двух удаленных от друг друга точках поля, силы которого совершают усилия, равные одному Дж, при доставке заряда от одного отрезка к конечному. Номинал единицы заряда равен одному Кл, таким образом, обозначение 220 Вольт включает в себя понятие, что данная сеть способна потратить энергию в 220 Дж для транспортировки зарядов от входной точки до потребителя, это и называется электрическим напряжением в сети.

Виды напряжения электрического тока

Что такое электрическое напряжение, описывается в учебниках по физике, там же приводится его классификация на основании временного промежутка подачи энергии. По данному признаку напряжение бывает:

  1. Постоянное – это когда на одном конце проводника ток и электрическое напряжение положительные, а на другом – отрицательные, и их значение направлено в одну сторону. Чаще всего такая система встречается в автономных батареях слабой и средней мощности;

Важно! Случайная или умышленная замена полярностей может привести к выходу из строя прибора, а также короткому замыканию при соединении нескольких элементов, осуществлять это нужно последовательно, стыкуя минусовый контакт к плюсовому. Синусоида при постоянном токе будет ровной без рывков и волн.

  1. Переменный ток и электрическое напряжение отличаются от постоянных тем, что у них может быть несколько направлений, например, при частой замене потенциалов полярностей или их перемещении возникает обратное движение заряда, частота данного действия и будет показателем переменного тока. Чаще всего данную систему используют для транспортировки электричества по проводнику на большие расстояния, так как потери тока минимальны, следовательно, и напряжение не уменьшается. Также переменный ток используется в трехфазных двигателях и при доставке постоянного тока на трансформатор для его последующего разделения. Синусоида переменного тока выглядит неровной, волнообразной, с множественными скачками. Существуют формула и механизмы, которые используются для преобразования переменного тока в постоянный, это возможно при наличии конденсаторов и диодного моста.

Между фазами переменного тока также существуют свои показатели, в данном случае напряжение равно 380В, по количеству разности потенциалов в трехфазной сети. В сети напряженностью 220В всего два провода: один – с несущей фазой, второй – с нулем, также для безопасности добавляется кабель заземления. В трехфазной сети имеется четыре жилы, и один дополнительный заземляющий провод, в сумме напряжение всех трех фаз составляет 380В.

Меры предосторожности

Ток и электрическое напряжение являются источником повышенной опасности, поэтому при работе и эксплуатации данного типа энергии необходимо соблюдать нормы и правила безопасности, не допускать аварийных ситуаций и обеспечить все приборы автоматической системой отключения питания.

Запрещается работать с проводкой, находящейся под напряжением, или без устройства для заземления. В случае возникновения короткого замыкания необходимо отключить все приборы от сети и предотвратить возгорание обмотки двигателя или кабеля.

Видео

То есть электрическое поле должно было «протащить» электроны через нагрузку, и энергия, которая при этом израсходовалась, характеризуется величиной, называемой электрическим напряжением. Эта же энергия потратилась на какое-то изменение состояния вещества нагрузки. Энергия, как мы знаем, не пропадает в никуда и не появляется из ниоткуда. Об этом гласит Закон сохранения энергии . То есть, если ток потратил энергию на прохождение через нагрузку, эту энергию приобрела нагрузка и, например, нагрелась.

То есть, приходим к определению: напряжение электрического тока – это величина, показывающая, какую работу совершило поле при перемещении заряда от одной точки до другой. Напряжение в разных участках цепи будет различным. Напряжение на участке пустого провода будет совсем небольшим, а напряжение на участке с какой-либо нагрузкой будет гораздо большим, и зависеть величина напряжения будет от величины работы, произведенной током. Измеряют напряжение в вольтах (1 В). Для определения напряжения существует формула:

где U - напряжение, A – работа, совершенная током по перемещению заряда q на некий участок цепи.

Напряжение на полюсах источника тока

Что касается напряжения на участке цепи – все понятно. А что же тогда означает напряжение на полюсах источника тока ? В данном случае это напряжение означает потенциальную величину энергии, которую может источник придать току. Это как давление воды в трубах. Эта величина энергии, которая будет израсходована, если к источнику подключить некую нагрузку. Поэтому, чем большее напряжение у источника тока, тем большую работу может совершить ток.

2) Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются

связанными: электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются

вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направлен-ного движения зарядов

Поэтому для диэлектриков не проходят наши доказательства свойств

проводников - ведь все эти рассуждения опирались на возможность появления тока. И дей-ствительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье,

не распростаняется на диэлектрики.

2. Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3. Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4. Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о

«потенциале диэлектрика» не приходится.

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации . Физический смысл вектора электрической поляризации - это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

    Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация - состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает в сегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью , направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством:

В зависимости от механизма поляризации, поляризацию диэлектриков можно подразделить на следующие типы:

    Электронная - смещение электронных оболочек атомов под действием внешнего электрического поля. Самая быстрая поляризация (до 10 −15 с). Не связана с потерями.

    Ионная - смещение узлов кристаллической структуры под действием внешнего электрического поля, причем смещение на величину, меньшую, чем величина постоянной решетки. Время протекания 10 −13 с, без потерь.

    Дипольная (Ориентационная) - протекает с потерями на преодоление сил связи и внутреннего трения. Связана с ориентацией диполей во внешнем электрическом поле.

    Электронно-релаксационная - ориентация дефектных электронов во внешнем электрическом поле.

    Ионно-релаксационная - смещение ионов, слабо закрепленных в узлах кристаллической структуры, либо находящихся в междуузлие.

    Структурная - ориентация примесей и неоднородных макроскопических включений в диэлектрике. Самый медленный тип.

    Самопроизвольная (спонтанная) - благодаря этому типу поляризации у диэлектриков, у которых он наблюдается, поляризация проявляет существенно нелинейные свойства даже при малых значениях внешнего поля, наблюдается явление гистерезиса. Такие диэлектрики (сегнетоэлектрики) отличаются очень высокими значениями диэлектрической проницаемости (от 900 до 7500 у некоторых видов конденсаторной керамики). Введение спонтанной поляризации, как правило, увеличивает тангенс угла потерь материала (до 10 −2)

    Резонансная - ориентация частиц, собственные частоты которых совпадают с частотами внешнего электрического поля.

    Миграционная поляризация обусловлена наличием в материале слоев с различной проводимостью, образованию объемных зарядов, особенно при высоких градиентах напряжения, имеет большие потери и является поляризацией замедленного действия.

Поляризация диэлектриков (за исключением резонансной) максимальна в статических электрических полях. В переменных полях, в связи с наличием инерции электронов, ионов и электрических диполей, вектор электрической поляризации зависит от частоты.

На этой страничке кратко излагаются основные величины электрического тока. По мере необходимости, страничка будет пополняться новыми величинами и формулами.

Сила тока – количественная мера электрического тока, протекающего через поперечное сечение проводника. Чем толще проводник, тем больший ток может по нему течь. Измеряется сила тока прибором, который называется Амперметр. Единица измерения — Ампер (А). Сила тока обозначается буквой – I .

Следует добавить, что постоянный и переменный ток низкой частоты, течёт через всё сечение проводника. Высокочастотный переменный ток течёт только по поверхности проводника – скин-слою. Чем выше частота тока, тем тоньше скин-слой проводника, по которому течёт высокочастотный ток. Это касается любых высокочастотных элементов — проводников, катушек индуктивности, волноводов. Поэтому, для уменьшения активного сопротивления проводника высокочастотному току, выбирают проводник с большим диаметром, кроме того, его серебрят (как известно, серебро имеет очень малое удельное сопротивление).

Напряжение (падение напряжения) – количественная мера разности потенциалов (электрической энергии) между двумя точками электрической цепи. Напряжение источника тока – разность потенциалов на выводах источника тока. Измеряется напряжение вольтметром. Единица измерения — Вольт (В). Напряжение обозначается буквой – U , напряжение источника питания (синоним — электродвижущая сила) может обозначаться буквой – Е .

Узнайте больше о в нашей статье.

– количественная мера тока, характеризующая его энергетические свойства. Определяется основными параметрами – силой тока и напряжением. Измеряется мощность электрического тока прибором, который называется Ваттметр. Единица измерения — Ватт (Вт). Мощность электрического тока обозначается буквой – Р . Мощность определяется зависимостью:

Коснусь практического применения этой формулы на примере: Представьте, что у Вас есть электронагревательный прибор, мощность которого Вам не известна. Чтобы узнать потребляемую прибором мощность, измерьте ток и умножьте его значение на напряжение. Либо наоборот, имеется прибор мощностью 2 кВт (киловатт), на напряжение сети 220 вольт. Как узнать силу тока в кабеле питающего этот прибор? Мощность делим на напряжение, получаем ток: I = P / U = 2000 Вт/220 В = 9,1 А.

Потребляемая электроэнергия – суммарное значение потребляемой мощности от источника электрической сети за единицу времени. Измеряется потребляемая электроэнергия счётчиком (обыкновенным квартирным). Единица измерения – киловатт*час (кВт*ч).

Сопротивление элемента цепи – количественная мера, характеризующая способность элемента электрической цепи сопротивляться электрическому току. В простом виде, сопротивление это обыкновенный резистор. Резистор может использоваться: как ограничитель тока – добавочный резистор, как потребитель тока – нагрузочный резистор. Источник электрического тока так же обладает внутренним сопротивлением. Измеряется сопротивление прибором называемым Омметром. Единица измерения — Ом (Ом). Сопротивление обозначается буквой – R . Связано с током и напряжением законом Ома (формулой):

где U – падение напряжения на элементе электрической цепи, I – ток, протекающий через элемент цепи.

Рассеиваемая (поглощаемая) мощность элемента электрической цепи – значение мощности рассеиваемой на элементе цепи, которую элемент может поглотить (выдержать) без изменения его номинальных параметров (выхода из строя). Рассеиваемая мощность резисторов обозначается в его названии (например: двух ваттный резистор — ОМЛТ-2, десяти ваттный проволочный резистор – ПЭВ-10). При расчёте принципиальных схем, значение необходимой рассеиваемой мощности элемента цепи рассчитывается по формулам:

Для надёжной работы, определённое по формулам значение рассеиваемой мощности элемента умножается на коэффициент 1,5 , учитывающий то, что должен быть обеспечен запас по мощности.

Проводимость элемента цепи – способность элемента цепи проводить электрический ток. Единица измерения проводимости – сименс (См). Обозначается проводимость буквой — σ . Проводимость — величина обратная сопротивлению, и связана с ним формулой:

Если сопротивление проводника равно 0,25 Ом (или 1/4 Ом), то проводимость будет 4 сименс.

Частота электрического тока – количественная мера, характеризующая скорость изменения направления электрического тока. Имеют место понятия — круговая (или циклическая) частота — ω , определяющая скорость изменения вектора фазы электрического (магнитного) поля и частота электрического тока — f , характеризующая скорость изменения направления электрического тока (раз, или колебаний) в одну секунду. Измеряется частота прибором, называемым Частотомером. Единица измерения — Герц (Гц). Обе частоты связаны друг с другом через выражение:

Период электрического тока – величина обратная частоте, показывающая, в течение, какого времени электрический ток совершает одно циклическое колебание. Измеряется период, как правило, с помощью осциллографа. Единица измерения периода — секунда (с). Период колебания электрического тока обозначается буквой – Т . Период связан с частотой электрического тока выражением:

Длина волны высокочастотного электромагнитного поля – размерная величина, характеризующая один период колебания электромагнитного поля в пространстве. Измеряется длина волны в метрах (м). Длина волны обозначается буквой – λ . Длина волны связана с частотой и определяется через скорость распространения света:

– количественная мера, характеризующая способность накапливать энергию электрического тока в виде электрического заряда на обкладках конденсатора. Обозначается электрическая ёмкость буквой – С . Единица измерения электрической ёмкости — Фарада (Ф).

Магнитная индуктивность – количественная мера, характеризующая способность накапливать энергию электрического тока в магнитном поле катушки индуктивности (дросселя). Обозначается магнитная индуктивность буквой – L . Единица измерения индуктивности — Генри (Гн).

Реактивное сопротивление конденсатора (ёмкости) – значение внутреннего сопротивления конденсатора переменному гармоническому току на определённой его частоте. Реактивное сопротивление конденсатора обозначается — Х С и определяется по формуле:

Реактивное сопротивление катушки индуктивности (дросселя) – значение внутреннего сопротивления катушки индуктивности переменному гармоническому току на определённой его частоте. Реактивное сопротивление катушки индуктивности обозначается Х L и определяется по формуле:

Резонансная частота колебательного контура – частота гармонического переменного тока, на которой колебательный контур имеет выраженную амплитудно-частотную характеристику (АЧХ). Резонансная частота колебательного контура определяется по формуле:

, или

Добротность колебательного контура — характеристика, определяющая ширину АЧХ резонанса и показывающая, во сколько раз запасы энергии в контуре больше, чем потери энергии за один период колебаний. Добротность учитывает наличие активного сопротивления нагрузки. Добротность обозначается буквой – Q .

Для последовательного колебательного контура в RLC цепях, в котором все три элемента включены последовательно, добротность вычисляется:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи, соответственно.

Для параллельного колебательного контура, в котором индуктивность, емкость и сопротивление включены параллельно, добротность вычисляется:

Скважность импульсов – это отношение периода следования импульсов к их длительности. Скважность импульсов определяется по формуле.

С понятием «электрическое напряжение» всем нам приходится сталкиваться практически каждый день, ведь область его использования не ограничивается одними только электроприборами. Это и грозовые разряды во время дождя, и искры на пластмассовой расческе и одежде из синтетических тканей и пр.

Сухой академический язык дает следующее определение данному явлению: электрическое напряжение - указывающая на величину совершаемой зарядом в 1 Кл (Кулон) работы. Кулон, в свою очередь, указывает на величину заряда, пропущенную по проводящему материалу за 1 секунду при в 1 А.

Также допустимо другое определение, согласно которому электрическое напряжение представляет собой отношение работы, выполняемой электрическим полем по перемещению тестового (пробного) заряда между двумя точками, к численному значению данного заряда. При этом принято считать, что перенос заряда не влияет на разность потенциалов (не изменяет напряжения), а траектория движения может быть проигнорирована. В виде формулы данное определение записывается следующим образом:

где U - напряжение, A - работа, q - заряд.

Чтобы запомнить, в чем измеряется электрическое напряжение, нет необходимости в заучивании, ведь подсказка всегда под рукой, так как на всех источниках тока указывается значение напряжения и его размерность: достаточно взглянуть на любую батарейку. Единица измерения - Вольт (В, V).

Понятия «электрическое напряжение» для цепей постоянного и переменного тока различаются. В характеризующемся периодическим прохождением синусоиды через нулевую отметку, для расчетов используется не мгновенное, а действующее значение. Это возможно благодаря тому, что его работа при активной линейной нагрузке численно соответствует постоянному напряжению.

Тот, кому довелось сталкиваться с трехфазными электродвигателями, наверняка обратил внимание на странную запись в паспортных характеристиках. Там через знак дроби указывается два напряжения, например, 220/380 В. Никакой опечатки нет, действительно, оборудование способно работать на двух разных действующих значениях. Откуда же в сети 380 В может взяться 220? Оказывается, напряжение может быть как фазным, так и линейным, в зависимости от способа измерения. Фазное определяют, измеряя значение между каждой фазой и нулевым проводом, а линейное - между фазными проводниками. Соединив цепь нагрузки в треугольник, можно получить равенство линейного и а для схемы «звезда» фазное в 1,73 раза меньше линейного.

Для измерения напряжения используется специальный прибор - вольтметр. Главная его особенность - это необходимость подключения токоснимающих щупов параллельно нагрузке. Высокое не вносит шунтирующих искажений. Именно поэтому, например, в бытовом применении возможно прямое подключение к розетке (в отличие от амперметра, включающегося в разрыв цепи).

Но оставим трехэтажные формулы академикам и разберемся, что же такое «напряжение электрического тока», говоря простым человеческим языком. Итак, это разность зарядов (потенциалов) между двумя произвольными точками проводника или электрического поля. Источник, вызывающий движение электронов по проводнику (генератор, батарея), создает на одном его конце их избыток, а на другом - недостаток. Соответственно, значение зарядов также отличается. Достаточно соединить эти точки любой проводящей средой, и возникнет электрический ток - движение заряженных частиц, стремящееся нивелировать указанное различие. Другими словами, природа тока подразумевает стремление атомов к устойчивому состоянию, нарушенному магнитными полями генератора. Напряжение может существовать и без тока, если сопротивление между точками велико. Это объясняет тот факт, что привычные батарейки не «бьются током».

Понравилась статья? Поделиться с друзьями: