Какой цвет лучше поглощает частички космической пыли. Тайны особой субстанции

КОСМИЧЕСКАЯ МАТЕРИЯ НА ПОВЕРХНОСТИ ЗЕМЛИ

К сожалению,однозначных критериев дифференциации косми- ческого вещества от близких к нему по форме образований земного происхождения до сих пор не выработано. Поэтому большинство исследователей предпочитает вести поиски косми- ческих частиц в районах, удаленных от промышленных центров. По этой же причине основным объектом исследования являются шариковидные частицы, абольшая часть материала,имеющего неправильную форму,как правило,выпадает из поля зрения. Во многих случаях анализируется только магнитная фракция сферических частиц, по которой сейчас и имеются наиболее разносторонние сведения.

Наиболее благоприятными объектами для поисков космичес- кой пыли являются глубоководные осадки /ввиду малой скорости осадконакопления/,а также полярные льдинки, прекрасно сохраняющие все вещество,оседающее из атмосферы.Оба объекта практически свободны от индустриального загрязнения и перспективны в целях стратификации, изучения распределе- ния космического вещества во времени и пространстве. По условиям осадконакопления к ним близки и накопления соли, последние удобны еще и тем, что позволяют легко выделять искомый материал.

Весьма перспективными могут оказаться поиски распыленно- го космического вещества в торфяных отложениях.Известно, что ежегодный прирост верховых торфяников составляет приблизительно 3-4 мм в год,а единственным источником минерального питания для растительности верховых болот яв- ляется вещество,выпадающее из атмосферы.

Космическая пыль из глубоковод- ных отло жений

Своеобразные красноцветные глины и илы, сложенные остат- ками кремнистых радиолярий и диатомей, покрывают 82 млн км 2 океанического дна, что составляет шестую часть поверхности нашей планеты. Их состав по С.С.Кузнецовувыглядит следую- щим образом:55% SiO 2 ;16% Al 2 O 3 ;9% F eO и 0,04% N i и Со, На глубине 30-40 см в ней обнаружены зубы рыб, жив- ших в третичную эпоху.Это дает основание заключить, что скорость осадконакопления составляет примерно 4 см за один миллион лет. С точки зрения земного происхождения состав глин трудно поддается интерпретации.Высокоесодержание в них никеля и кобальта является предметом многочисленных исследований и считается связанным с внесением космического материала / 2,154,160,163,164,179/. Действительно, кларк никеля равен 0,008% для верхних горизонтов земной коры и 10% для морской воды /166/.

Внеземное вещество в глубоководных отложениях обнаружено впервые Мерреем во время экспедиции на "Челленджере" /1873-1876 гг/ /так называемые"космические шарики Меррея"/. Несколько позднее их исследованием занялся Ренар, резуль- татом чего явился совместный труд по описанию найденного материала /141/.Обнаруженные космические шарики принадле- жали к двум типам: металлическому и силикатному. Оба типа обладали магнитными свойствами, что позволило применить для выделения их из осадка магнит.

Сферуллы имели правильную круглую форму со средним диаметром в 0,2 мм. В центре шарика было обнаружено ковкое железное ядро,покрытое сверху пленкой окиси.В составе шариков найдены никель и кобальт, что позволило высказать предположение об их космическом происхождении.

Силикатные сферуллы,как правило, не имели строгой сфе- рической форма / их можно назвать сфероидами/. Размер их несколько больше, чем металлических, диаметр достигает 1 мм . Поверхность имеет чешуйчатое строение. Минералогичес кий состав весьма однообразен:в них встречаются железо- магниевые силикаты-оливины и пироксены.

Обширный материал по космической составляющей глубоковод-ных отложений собран шведской экспедицией на судне "Альбатрос" в 1947-1948 гг. Участники ее применяли отбор колонок грунта до глубины 15 метров,изучению полученного материала посвящен ряд работ / 92,130,160,163,164,168/. Пробы оказались очень богатыми:Петтерсон указывает, что на 1кг осадка приходится от нескольких сот до нескольких тысяч сферул.

Все авторы отмечают весьма неравномерное распределение шариков как по разрезу океанического дна,так и по его площади. Например,Хантер и Паркин /121/,исследовав два глубоководных образца из разных мест Атлантического океана, нашли, что один их них содержит почти в 20 разбольше сферул, чем другой.Они объяснили это различие неодинаковыми скоростями осадконакопления в разных частях океана.

В 1950-1952 гг.датская глубоководная экспедиция приме- нила для сбора космического вещества в донных отложениях океана магнитные грабли - дубовую доску с укрепленными на ней 63 сильными магнитами. С помощью этого приспособления было прочесано около 45000 м 2 поверхности океанического дна. Среди магнитных частиц, имеющих вероятное космическое происхождение, выделены две группы: черные шарики с метал- лическими ядрами или без них и коричневые шарики с кристал- лической структурой; первые по размеру редко превышают 0,2 мм ,они блестящи, с гладкой или шероховатой поверх- ностью. В их числе встречаются сплавленные экземпляры неодинаковых размеров. В шариках обнаружены никель и кобальт,в минералогическом составе обычны магнетит и шрей-берзит.

Шарики второй группы обладают кристаллической структурой и имеют коричневый цвет. Средний диаметр их составляет 0,5 мм . Эти сферулы содержат кремний,алюминий и магний и имеют многочисленные прозрачные включения оливина или пироксенов /86/. Вопрос о наличии шариков в донных илах Атлантического океана обсуждается также в /172а/.

Космическая пыль из почв и осадочных пород

Академик Вернадский писал, что космическое вещество оседает на нашу планету непрерывно.Отсюда следует принци- пиальная возможность найти его в любой точке земной по- верхности.Это связано,однако,с определенными трудностями, которые можно свети к следующим основным моментам:

1. количество вещества,выпадающего на единицу площади» весьма незначительно;
2. условия сохранения сферул в течение длительного времени еще недостаточно изучены;
3. имеется возможность индустриального и вулканического загрязнения;
4. нельзя исключить роль переотложения уже выпавшего вещества,в результате которого в одних местах будет наблюдаться обогащение,а в других - обеднение космическим материалом.

По-видимому,оптимальной для консервации космического материала является бескислородная среда,тлеющая,в част- ности, место в глубоководных бассейнах,в областях аккуму ляции осадочного материала с быстрым захоронением вещества, а также в болотах с восстановительной обстановкой. Наиболее вероятно обогащение космическим веществом в результате переотложения в определенных участках речных долин,где обычно откладывается тяжелая фракция минерального осадка /сюда попадает,очевидно,только та часть выпавшего ве- щества, удельный вес которого больше 5/. Не исключено, что обогащение этим веществом также имеет место в конечных моренах ледников,на дне каровых озер,в ледниковых ямках, где скапливается талая вода.

В литературе есть сведения о находках во время шлихова ния сферул,относимых к космическим /6,44,56/. В атласе минералов россыпей,изданном гос.изд.научно-технической литературы в 1961году, сферулы такого рода отнесены к метеоритным.Особый интерес представляют находки космичес- кой пыли в древних породах. Работы этого направления ве- дутся в последнее время весьма интенсивно рядом исследова- телей.Так,сферические час типы, магнитные, металлические

и стекловатые, первые с характерными для метеоритов вид манштеттеновыми фигурами и с высоким содержанием никеля, описаны Школьником в меловых, миоценовых и плейстоценовых породах Калифорнии /177,176/. Позднее аналогичные находки были сделаны в триасовых породах северной Германии /191/. Круазье, поставив перед собой цель изучить космическую компоненту древних осадочных пород, исследовал образцы из разных мест /района Нью-Йорка, Нью-Мексико, Канады, Техаса / и различного возраста / от ордовика до триаса включительно/. В числе изученных образцов находились из-вестняки, доломиты, глины, сланцы. Автор везде находил сферулы, которые заведомо не могут быть отнесены к инду- стриальным загрязнениям, и, скорее всего имеют космическую природу. Круазье утверждает, что все осадочные породы со-держат космический материал, причем количество сферул ко- леблется от 28 до 240 на грамм. Размер частиц в большин- стве случаев укладывается в диапазоне от Зµ до 40µ , а количество их обратно пропорционально размерам /89/. Данные о метеорной пыли в кембрийских песчаниках Эстонии сообщает Вийдинг /16а/.

Как правило, сферулы сопровождают метеориты и их находят в местах падений, наряду с метеоритными обломками. Ранее всего шарики были найдены на поверхности метеорита Браунау /3/ и в кратерах Хенбери и Вабар /3/, позднее аналогичные образования наряду с большим числом частиц неправильной формы обнаружены в окрестностях Аризонского кратера /146/. Этот вид мелкодисперсного вещества, как уже указывалось выше, обычно обозначают как метеоритную пыль. Последняя подвергалась детальному изучению в работах многих иссле дователей как в СССР, так и за рубежом /31,34,36,39,77,91, 138,146,147,170-171,206/. На примере Аризонских сферул установлено, что эти частицы имеют в среднем размер 0,5 мм и состоят или из камасита, проросшего гетитом, или из чередующихся слоев гетита и магнетита,покрытых тонким слоем силикатного стекла с мелкими включениями кварца. Содержание никеля и железа в указанных минералах характе- ризуется следующими цифрами:

минерал железо никель
камасит 72-97% 0,2 - 25%
магнетит 60 - 67% 4 - 7%
гетит 52 - 60% 2-5%

Найнинджер /146/ обнаружил в аризонских шариках минера- лы, характерные для железных метеоритов:кохенит,стеатит, шрейберзит,троилит. Содержание никеля оказалось равным, в среднем,17%, что совпадает,в общем,с цифрами, получен- ными Рейнгардом /171/. Следует отметить, что распределение мелкодисперсного метеоритного вещества в окрестностях Аризонского метеоритного кратера весьма неравномерно» Вероятной причиной этого является,по-видимому, иливетер, или выпадение сопутствующего метеоритного дождя. Механизм образования аризонских сферул,по Рейнгардту,состоит во внезапном застывании жидкого мелкодисперсного метеоритного вещества. Другие авторы /135/, наряду с этим,отводят опре- деленное место конденсации образовавшихся в момент падения паров. Близкие по существу результаты получены в ходе изу- чения мелкодисперсного метеоритного вещества в районе выпадения Сихотэ-Алиньского метеоритного дождя. Е.Л.Кринов /35-37,39/ подразделяет это вещество на следующие основные категории:

1. микрометеориты с массой от 0,18 до 0,0003 г,имеющие регмаглипты и кору плавления / следует строго отличать микрометеориты по Е.Л.Кринову от микрометеоритов в понима- нии Уиппла, речь о которых была выше/;
2. метеорная пыль - в большинстве своем полые и пористые магнетитовые частицы, образовавшиеся в результате разбрызги-вания в атмосфере вещества метеорита;
3. метеоритная пыль - продукт дробления падающих метеори-тов, состоящая из остроугольных обломков. В минералогический состав последних входит камасит с примесью троилита, шрей-берзита и хромита. Как и в случае Аризонского метеоритного кратера, распре- деление вещества по площади неравномерно.

Кринов считает сферулы и другие оплавленные частицы продуктами абляции метеоритов и в доказательство приводит находки обломков последних с прилипшими на них шариками.

Известны находки и на месте падения каменного метеорит- ного дождя Кунашак /177/.

Особого обсуждения заслуживает вопрос о распределении космической пыли в почвах и в других природных объектах района падения Тунгусского метеорита. Большие работы в этом направлении были проведены в 1958-65 гг.экспедициями Комитета по метеоритам АН СССР СО АН СССР.Установлено, что в почвах как эпицентра, так и мест, удаленных от него на расстоянии до 400 км и более, почти постоянно обнаруживаются металлические и силикатные шарики размером от 5 до 400 микрон. В их числе встречаются блестящие, матовые и шероховатые час типы, правильные шарики и полые колбочки.В некоторых случаях металлические и силикатные частицы сплавлены друг с другом. По К.П.Флоренскому /72/,почвы эпицентральной области /междуречье Хушмы - Кимчу/ содержат эти частицы лишь в небольшом количестве /1-2 на условную единицу площади/. Пробы с аналогичным содержанием шариков встречаются на расстоянии до 70 км от места падения. Относительная бед- ность этих образцов объясняется по К.П.Флоренскому тем обстоятельством, что в момент взрыва основная масса метео- рита, перейдя в мелкодисперсное состояние,была выброшена в верхние слои атмосферыи дрейфовала затем по направлению ветра. Микроскопические частили, оседая по закону Стокса, должны были в этом случае образовать шлейф рассеяния. Флоренский полагает, что южная граница шлейфа находится примерно в 70 км к C З от метеоритной заимки,в бассейне реки Чуни / район фактории Муторай/,где обнаружена проба с содержанием космическихшариков до 90 штук на условную единицу площади. В дальнейшем, по мнению автора,шлейф продолжает тянуться на СЗ,захватывая бассейн реки Таймуры. Работами СО АН СССР в 1964-65 гг. установлено, что относи-тельно богатые пробы встречаются вдоль всего течения р. Таймуры, a также на Н.Тунгуске /см.карту-схему/. Выделен-ные при этом сферулы содержат до 19% никеля / по данным микроспектрального анализа, проведенного в институте ядер- ной физики СО АН СССР/.Это примерно совпадает с цифрами, полученными П.Н.Палеем в полевых условиях на модели ша- риков,выделенных из почв района Тунгуской катастрофы. Эти данные позволяют утверждать, что найденные частицы имеют действительно космическое происхождение. Вопрос же об отношении их к Тунгусскому метеориту остается пока что открытым ввиду отсутствия аналогичных исследований в фоновых районах,а также возможной роли процессов переотложения и вторичного обогащения.

Интересны находки сферул в районе кратера на Патомском нагорье. Происхождение этого образования, отнесенного Обручевым к вулканическим, до сих пор остается спорным, т.к. присутствие вулканического конуса в районе, удаленном на многие тысячи километров от вулканических очагов, древ них и современных,в многокилометровых осадочно-метаморфи-ческих толщах палеозоя, кажется по меньшей мере странным. Исследования сферул из кратера могло бы дать однозначный ответ на вопрос и о его происхождении / 82,50,53/.Выделе- ние вещества из почв может быть осуществлено методом шли хования. Таким путем выделяется фракция размером в сотни микрон и удельным весом выше 5.Однако, в этом случае существует опасность отбросить всю мелкую магнитную фрак цию и большую часть силикатной. Е.Л.Кринов советует приме нять магнитное шлихование с магнитом, подвешенным ко дну лотка / 37/.

Более точным методом является магнитная сепарация, сухая или мокрая, хотя и она имеет существенный недостаток: в процессе обработки теряется силикатная фракция.Одну из установок сухой магнитной сепарации описывает Рейнгардт/171/.

Как уже указывалось,космическое вещество нередко собирают у поверхности земли,в районах, свободных от индустриального загрязнения. Посвоему направлению эти работы близки к поискам космического вещества в верхних горизонтах почвы. В качестве пылеуловителей могут служить подносы,наполнен- ные водой или клейким раствором,и пластины,смазанные глицерином. Время экспозиции может измеряться часами, сутками, неделями в зависимости от целей наблюдений.В обсерватории Данлап в Канаде сборы космического вещества с помощью клейких пластин проводились уже с 1947 года /123/. В лите- ратуре описано несколько вариантов методик такого рода. Например, Ходж и Райт /113/ в течение ряда лет использовали с этой целью предметные стекла,покрытые медленно сохнущей эмульсией и по застывании образующие готовый препарат пыли; Круазье /90/ применял налитый на подносы этиленовый гликоль, который легко отмывался дистиллированной водой;в работах Хантера и Паркина /158/ была использована промасленная нейлоновая сетка.

Во всех случаях в осадке обнаружены сферические частицы, металлические и силикатные, чаще всего размером мельче 6 µ в диаметре и редко превышающие 40 µ .

Таким образом,совокупность представленных данных подтверждает предположение о принципиальной возможности обнаружения космического вещества в почве практически на любом участке земной поверхности. В то же время следует иметь ввиду, что использование почвы в качестве объекта для выявления космической компоненты связано с методическими трудностями, намного превышающими таковые применительно к снегу, льду и,возможно,к донным илам и торфу.

Космическое вещество во льдах

По мнению Кринова /37/ обнаружение космического ве-щества в полярных районах имеет существенное научное значе- ние, т.к.таким путем может быть получен в достаточном количестве материал,изучение которого приблизит, вероятно, решение некоторых геофизических и геологических вопросов.

Выделение космического вещества из снега и льда может быть осуществлено различными методами, начиная от сбора крупных обломков метеоритов и кончая получением из талой воды минерального осадка, содержащего минеральные частицы.

В 1959г. Маршалл /135/ предложил остроумный способ исследования частиц изо льда,подобный методу подсчета красных кровяных телец в кровяном русле. Суть его заклю- чается в том, что к воде, полученной при таянии образца льда, добавляется электролит и растворпропускается через узкое отверстие с электродами по обеим сторонам. При прохождении частицы сопротивление резко изменяется пропор-ционально ее объему. Изменения фиксируются с помощью осо- бого регистрирующего устройства.

Следует иметь ввиду, что стратификация льда сейчас осуществляется несколькими способами. Не исключено, что сопоставление уже стратифицированных льдов с распределением космического вещества может открыть новые подходык стратификации в местах,где прочие методы не могут быть по тем или иным причинам применены.

Для сбора космической пыли американские антарктические экспедиции 1950-60 гг. использовали керны,полученные при определении бурением толщины ледяного покрова. /1 S3/. Образцы диаметром около 7 см распиливались на отрезки по 30 см длиной, расплавлялись и отфильтровывались. Полученный осадок тщательно изучался под микроскопом. Были обнаружены частицы как сферической,так и неправильной формы, причем первые составляли незначительную часть осадка. Дальнейшее исследование ограничилось только сферулами, поскольку они могли быть более или менее уверенно отнесены к космической компоненте. Среди шариков размером от 15 до180 /чбыли найдены частицы двух видов: черные,блестящие,строго сфе-рические и коричневые прозрачные.

Детальное изучение космических частиц,выделенных из льдов Антарктиды и Гренландии,было предпринято Ходжем и Райтом /116/. В целях избежания индустриального загрязне- ния лед брался не с поверхности,а с некоторой глубины - в Антарктиде использован слой 55-летней,а в Гренландии- 750-летней давности. Для сравнения были отобраны частицы из воздуха Антарктиды,которые оказались сходными с ледни-ковыми. Все частицы укладывались в 10 групп классификации с резким делением на сферические частицы, металлические и силикатные, с никелем и без него.

Попытка получения космических шариков из высокогорного снега предпринята Дивари /23/. Растопив значительный объем снега /85 ведер/,взятого с поверхности в 65 м 2 на леднике Туюк-Су в Тянь-Шане, он,однако, не получил желаемого результаты, что может быть объяснено или неравномерностью выпадения космической пыли на земную поверхность,или особенностями примененной методики.

В целом, по-видимому,сбор космического вещества в полярных районах и на высокогорных ледниках является одним из наиболее перспективных направлений работы по космической пыли.

Источники загрязнения

В настоящее время известны два главных источника материа- ла,который может имитировать по своим свойствам космическую пыль:вулканические извержения и отходы промышленных предприятий и транспорта. Известно, что вулканическая пыль, выбрасываемая во время извержений в атмосферу, может оставаться там во взвешенном состояниимесяцы и годы. В силу структурных особенностей и небольшого удельного веса этот материал может распространяться глобально, причем в процессе переноса происходит дифференциация частиц по весу,составу и размеру, что необходимо учитывать при конкретном анализе обстановки. После известного извержения вулкана Кракатау в августе 1883 г. мельчайшая пыль,выбро- шенная на высоту до 20 км. обнаруживалась в воздухе в течение по крайней мере двух лет /162/. Аналогичные наблю- дениябыли сделаны в периоды извержений вулканов Мон-Пеле /1902/, Катмай /1912/,группы вулканов в Кордильерах /1932/, вулкана Агунг /1963/ /12/. Микроскопически пыль,собранная из разных районов вулканической деятельности,имеет вид зерен неправильной формы, с криволинейными,изломанными, изрезанными контурами и сравнительно редко сфероидальную и сферическую с размером от 10µ до 100. Количество сферои- дов составляет лишь 0,0001% по весу от общего материала /115/. Другие авторы поднимают эту величину до 0,002% /197/.

Частицы вулканического пепла имеют черный, красный,зе- леноватый,серый или коричневый цвет. Иногда они бесцветны, прозрачны и напоминают стекло. Вообще говоря,в вулканичес- ких продуктах стекло составляет существенную часть. Это подтверждается данными Ходжа и Райта, которые нашли, что частицы с количеством железа от 5% и выше составляют вблизи вулканов лишь 16%. Следует учитывать то обстоятельство, что в процессе переноса пыли происходит дифференциация ее по размеру и удельному весу,причем крупные пылинки отсеиваютсябыстрее всего. Вследствие этого в отдаленных от вулканических центров районах вероятно обнаружение лишь самых мелких и легких частиц.

Особому изучению были подвергнуты сферические частицы вулканического происхождения. Установлено, что они обладают чаще всего эродированной поверхностью, формой,грубо приб- лижающейся к сферической, но никогда не имеют вытянутых горлышек, подобно частицам метеоритного происхождения. Весьма существенно, что у них нет ядра, сложенного чистым железом или никелем,подобно тем шарикам,которые считаются космическими /115/.

В минералогическом составе вулканических шариков су- щественная роль принадлежит стеклу,имеющему пузыристую структуру,и железо-магниевым силикатам - оливину и пироксену. Гораздо меньшая часть их сложена рудными минералами - пири- том и магнетитом,которые большей частью образуют вкраплен- ники в стекле и каркасные структуры.

Что касается химического состава вулканической пыли,то в качестве примера можно привести состав пеплов Кракатау. Меррей /141/ обнаружил в нем высокое содержание алюминия /до 90%/ и низкое содержание железа / не превышающее 10%. Следует отметить, однако, что Ходж и Райт /115/ не смогли подтвердить данных Моррея в отношении алюминия.Вопрос о сферулах вулканического происхождения обсуждается также в /205а/.

Таким образом,свойства,характерные для вулканических материалов, можно резюмировать следующим образом:

1. вулканический пепел содержит высокий процент частиц неправильной формы и низкий - сферических,
2. шарики вулканической породы имеют определенные струк- турные особенности - эродированные поверхности,отсутствие полых сферул, нередко пузыристость,
3. в составе сферул преобладает пористое стекло,
4. процент магнитных частиц низок,
5. в большинстве случаев сферическая форма частиц несовершенна,
6. остроугольные частицы имеют резко угловатые формы ограничения, что позволяет использовать их в качестве абразионного материала.

Весьма существенная опасность имитации космических сфе рул индустриальными шариками,в большом количествесбра- сываемыми паровозными,пароходными,заводскими трубами, образующимися в ходе электросварки и т.д. Специальные исследования подобных объектов показали, что значительный процент последних имеет форму сферул. По Школьнику /177/, 25% индустриальных продуктов сложено металлическим шлаком. Он же дает такую классификацию индустриальной пыли:

1. шарики неметаллические, неправильной формы,
2. шарики полые,сильно блестящие,
3. шарики,похожие на космические,сложенные металли- ческим материалом с включением стекла. Среди последних, имеющих наибольшее распространение,встречаются каплевидные, колбочки,сдвоенные сферулы.

Под интересующим нас углом зрения химический состав индустриальной пыли изучался Ходжем и Райтом /115/.Уста- новлено, что характерными чертами ее химического состава является высокое содержание железа и в большинстве случаев - отсутствие никеля. Необходимо иметь,однако,ввиду, что ни один из указанных признаков не может служить абсолютным критерием отличия,тем более, что химический состав разных типов индустриальной пыли может быть разнообразным, и заранее предусмотреть появление того или иного сорта ин дустриальных сферул практически невозможно. Поэтому наилучшей гарантией от путаницы может служить на современном уровне знаний лишь отбор проб в отдаленных "стерильных" от индустриальных загрязнений районах. Степень индустриального загрязнения,как показали специальные исследования,находится в прямой зависимости от расстояния до населенных пунктов. Паркин и Хантер в 1959 годупровели наблюдения по возмож ности транспортировки индустриальных сферул водой /159/. Хотя из заводских труб вылетали шарики диаметром более 300µ ,в водном бассейне, расположенном в 60 милях от горо- да по направлению господствующих ветров,были найдены лишь единичные экземпляры размером 30-60, количество экземпля- ров размером 5-10µ было,впрочем,значительным. Ходж и Райт /115/ показали, что в окрестностях обсерватории Яле, вблизи центра города,за день на 1см 2 поверхности выпало до 100 шариков диаметром более 5µ . Их количество вдвое уменьшалось по воскресеньям и падало в 4 раза на расстоя нии 10 миль от города. Таким образом,в отдаленных районах вероятно индустриальное загрязнение только шариками диамет- ром менее 5µ .

Следует считаться с тем обстоятельством, что в последние 20 лет появилась реальная опасность загрязнения продуктами ядерных взрывов» которые могут поставлять сферулы в глобаль- ном масштабе /90,115/. Эти продукты отличаются от да подоб- ных радиоактивностью и присутствием специфических изотопов - стронций - 89 и стронций - 90.

Наконец, следует иметь в виду, что некоторое загрязнение атмосферы продуктами,сходными с метеорной и метеоритной пылью, может быть вызвано сгоранием в атмосфере Земли искусственных спутников и ракетоносителей. Явления, наблюдае- мые при этом, весьма сходны с тем, что имеет место при выпадении болидов. Серьезную опасность для научных исследова- ний космического вещества представляют безответственные эксперименты, реализуемые и планируемые за рубежом с запуском в околоземное космическое пространство мелкодис- персного вещества искусственного происхождения.

Форма и физические свойства космич еской пыли

Форма,удельный вес,цвет,блеск,хрупкость и другие физи- ческие свойства космической пыли,обнаруженной в различных объектах,подвергались изучению целым рядом авторов. Некото- рыми исследователями предложены схемы классификации косми- ческой пыли на основании ее морфологии и физических свойств. Хотя единая унифицированная система еще и не выработана, представляется,тем не менее,целесообразным привести некоторые из них.

Баддхью /1950/ /87/ на основании чисто морфологических признаков разделил наземное вещество на следующие 7 групп:

1. неправильные серые аморфные обломки размером 100-200 µ .
2. шлакообразные или пепловидные частицы,
3. округлые зерна, похожие на тонкий черный песок /магнетит/,
4. гладкие черные блестящие шарики диаметром в среднем 20µ .
5. крупные черные шарики, менееблестящие,часто шеро- ховатые, редко превышающие 100 µ в диаметре,
6. силикатные шарики от белого до черного цвета, иногда с газовыми включениями,
7. разнородные шарики,состоящие из металла и стекла, размером в среднем 20µ .

Все разнообразие типов космических частиц, однако,не исчерпывается, по-видимому, перечисленными группами. Так,Хантер и Паркин /158/ обнаружили в воздухе округлые уплощенные частицы,по-видимому,космического происхожде-ния,которые не могут быть отнесены ни к одному из пере- численных классов.

Из всех описанных выше групп наиболее доступны для опознания по внешнему виду 4-7,имеющие форму правильных шариков.

Е.Л.Кринов, изучая пыль, собранную в районе Сихотэ- Алиньского падения, различал в ее составе неправильные по форме обломки, шарики и пустотелые колбочки /39/.

Типичные формы космических шариков представлены на рис.2.

Ряд авторов классифицируют космическое вещество по совокупности физических и морфологических свойств. По удел ному весу космическое вещество обычно делят на 3 группы /86/:

1. металлическая,состоящая преимущественно из железа, с удельным весом больше 5 г/см 3 .
2. силикатная - прозрачные стеклянные частицы с удельным весом примерно 3 г/см 3
3. разнородная: металлические частицы с включениями стекла и стеклянные с магнетическими включениями.

Большинство исследователей остается в пределах этой грубой классификации,ограничиваясь лишь самыми очевидными чертами различия.Однако те из них, которые имеют дело с частицами, добытыми из воздуха,выделяют еще одну группу - пористых, хрупких,с плотностью около 0,1г/см 3 /129/. К ним относятся частицы метеорных потоков и большинство ярких спорадических метеоров.

Довольно обстоятельная классификация частиц,обнаруженных в Антарктических и Гренландских льдах, а также отловленных из воздуха, дана Ходжем и Райтом и представлена на схеме/205/:

1. черные или темно-серые тусклые металлические шарики, покрытые ямками,иногдаполые;
2. черные,стекловатые,высокопреломляющие шарики;
3. светлые,белые или коралловые, стекловатые, гладкие, иногда полупрозрачные сферулы;
4. частицы неправильной формы,черные,блестящие,хрупкие, зернистые, металлические;
5. неправильной формы красноватые или оранжевые,тусклые, неровные частицы;
6. неправильной формы, розовато-оранжевые,тусклые;
7. неправильной формы,серебристые,блестящие и тусклые;
8. неправильной формы, разноцветные,коричневые,желтые, зеленые,черные;
9. неправильной формы,прозрачные,иногда зеленые или голубые,стекловатые, ровные,с острыми краями;
10. сфероиды.

Хотя классификация Ходжа и Райта и представляется наибо-лее полной,все же нередко встречаются частицы,которые, судя поописаниям различных авторов,трудно отнести безого- ворочно к одной из названных групп.Так,нередковстречаются вытянутые частицы,слипшиеся друг с другом шарики,шарики, имеющие на своей поверхности различные наросты /39/.

На поверхности некоторых сферул при детальном изучении обнаруживаются фигуры,сходные с видманштеттеновыми,наблюдае-мыми у железо-никелевых метеоритов / 176/.

Внутреннее строение сферул неотличаетсябольшим разно- образием. На основании этого признака можно выделить следую- щие 4 группы:

1. полые сферулы / встречаются с метеоритами/,
2. металлические сферулы с ядром и окисленной оболочкой / в ядре,как правило,сконцентрированы никель и кобальт, а в оболочке - железо и магний/,
3. окисленные шарики однородного сложения,
4. силикатные шарики,чаще всего однородные,с чешуйча- той поверхностью,с металлическими и газовыми включениями / последние придают им вид шлаков или даже пены/.

Что касается размеров частиц,то твердо установленное деление по этому признаку отсутствует,и каждый автор придерживается своей классификации в зависимости от специфики имеющегося материала. Самые крупные из описанных сферул, найденные в глубоководных отложениях Брауном и Паули /86/ в 1955 году, едва ли превосходят 1,5 мм в диаметре. Это близко к существующему пределу, найденному Эпиком /153/:

где r -радиус частицы,σ - поверхностное натяжение расплава, ρ - плотность воздуха,и v -скорость капли. Радиус

частицы не может превзойти известногопредела,иначе капля дробится на более мелкие.

Нижний предел,по всей вероятности,не ограничен, что следует из формулы и оправдывается на практике,потому что по мере усовершенствования методик авторы оперируют все более мелкими частицами.Большинство исследователей ограни- чивают нижний предел 10-15µ /160-168,189/.В последнее время начаты исследования частиц диаметром до 5 µ /89/ и 3 µ /115-116/,а Хеменвей, Фульман и Филлипс оперируют частицами до 0,2 /µ и меньше в диаметре,выделяя их в осо- бый класс нанаметеоритов / 108/.

Средний диаметр частиц космической пыли принимается равным 40-50 µ .В результате интенсивного изучения космичес- кого вещества из атмосферы японские авторы нашли,что 70% всего материала составляют частицы менее 15 µ в диаметре.

В ряде работ / 27,89,130,189/ содержится утверждение о том, что распределение шариков в зависимости от их массы и размеры подчиняется следующей закономерности:

V 1 N 1 =V 2 N 2

где v - масса шарика,N - количество шариков в данной группе Результаты, удовлетворительно совпадающие с теоретическими, были получены рядом исследователей, работавших с космическим материалом, выделенным из различных объектов /например, Антарктического льда, глубоководных осадков, материалов, полученных в результате спутниковых наблюдений/.

Принципиальный интерес представляет вопрос о том, в какой мере менялись свойства ныли на протяжении геологичес-кой истории. К сожалению, накопленный в настоящее время материал не позволяет дать однозначный ответ, однако, заслу- живает внимания сообщение Школьника /176/ о классификации сферул, выделенных из миоценовых осадочных пород Калифорнии. Эти частицы автор разбил на 4 категории:

1/ черные, сильно и слабо магнитные, сплошные или с ядрами, состоящими из железа или никеля с окисленной оболоч- кой из кремнезема с примесью железа и титана. Эти частицы могут быть полыми. Поверхность их интенсивно блестящая, по-лированная, в некоторых случаях шероховатая или радужная в результате отражения света от блюдцеобразных углублений на их поверхности,

2/ серо-стальные или голубовато-серые, пустотелые, тонко- стенные, очень хрупкие сферулы; содержат никель, имеют полированную или шлихованную поверхность;

3/ хрупкие шарики, содержащие многочисленные включения серостального металлического и черного неметаллического материала; в стенках их имеются микроскопические пузырь-ки / эта группа частиц наиболее многочисленна/;

4/ силикатные сферулы коричневого или черного цвета, немагнитные.

Нетрудно заменить, что первая группа по Школьнику близко соответствует 4 и 5 группам частиц по Баддхью.В числе этих частиц встречаются полые сферулы,аналогичные тем, которые находят врайонах падений метеоритов.

Хотя эти данные и не содержат исчерпывающей информации по затронутому вопросу,представляется возможным высказать в первом приближении мнение о том, что морфология и физи- ческие свойства,по крайней мере, некоторых групп частиц космического происхождения,выпадающих на Землю, не претер- певали существенной эволюции на протяжении доступного геологическому изучению периода развития планеты.

Химический состав космической пыли .

Изучение химического состава космической пыли встречается с определенными трудностями принципиального и технического характера. Уже сам по себе малый размер изучаемых частиц, трудность получения в сколько-нибудь значительных количест- вах создают существенные препятствия для применения методик, широко распространенных в аналитической химии. Далее, приходится иметь в виду,что исследуемые образцы в подавляю-щем большинстве случаев могут содержать примеси, и порою весьма значительные,земного материала. Таким образом, проб-лема изучения химического состава космической пыли перепле- тается с вопросом о ее дифференцировке от земных примесей. Наконец, сама постановка вопроса о дифференцировке"земного" и "космического" вещества является в какой-то степени условной, т.к. Земля и все компоненты,ее составляющие, представляют,в конечном счете, также космический объект, и поэтому,строго говоря,правильней было бы ставить вопрос об отыскании признаков различия между различными категориями космического вещества. Отсюда следует,что сходство ве- щества земного и внеземного происхождения может,в принципе, простираться очень далеко, что создает дополнительные трудности для изучения химического состава космической пыли.

Тем не менее,за последние годы наука обогатилась рядом методических приемов,позволяющих в известной степени прео- долеть или обойти возникающие препятствия. Разработка но- вейших методов радиационной химии, рентгеноструктурной микроанализ, усовершенствование микроспектральных методик дают ныне возможность исследовать ничтожные по своему размеру объекты. В настоящее время вполне доступным является анализ химического состава не только отдельных частиц кос- мической пыли, но и одной и той же частицы в различных ее участках.

В последнее десятилетие появилось значительное число работ,посвященных изучению химического состава космической пыли,выделенной из различных источников. По причинам, которых мы уже касались выше,исследованию подвергались главным образом,сферические частицы,относящиеся к магнит- ной фракции пыли, Как и в отношении характеристики физических свойств, наши знания о химическом составе остроугольного материала пока совершенно недостаточны.

Анализируя материалы,полученные в этом направлении целым рядом авторов,следует придти к заключению, что, во-первых, в космической пыли обнаруживаются те же элементы,что и в других объектах земного и космического происхождения,так, в ней найдены Fe , Si , Mg .В отдельных случаях - редко земельныеэлементы и Ag находки сомнительны/,в отношении достоверных сведений в литературе нет. Во-вторых, вся совокупность космической пыли, выпадающей на Землю, может бы ть разделена по химическому составу,по крайней мере,на т ри большие группы частиц:

а) металлические частицы с высокимсодержанием Fe и N i ,
б) частицы преимущественно силикатного состава,
в) частицы смешанной химической природы.

Нетрудно заметить,что перечисленные три группы,по существу,совпадают с принятой квалификацией метеоритов, что ук азывает на близкий,а,может быть,общий источник проис- хождения обоих видов космической материи. Можно отметить д алее большое многообразие частиц в пределах каждой из рассматриваемых групп.Это дает основание ряду исследовател ей делить космическую пыль по химическому составу на 5,6 и более групп. Так, Ходж и Райт выделяют следующие восемь т ипов основных частиц, отличающихся друг от друга как по мо рфологическим признакам,так и по химическому составу:

1. железные шарики с наличием никеля,
2. железные сферулы, никель в которых не обнаружен,
3. силикатные шарики,
4. другиесферулы,
5. неправильной формы частицы с высоким содержанием ж елеза и никеля;
6. то же без наличия сколько-нибудь значительных колич еств никеля,
7. силикатные частицы неправильной формы,
8. другие частицы неправильной формы.

Из приведенном выше классификации вытекает, между прочим, то обстоятельство, что наличие высокого содержания никеля в исследуемом материале не может быть признано обязатель-ным критерием его космического происхождения. Так, значи- тельная часть материала, извлеченного из льдов Антарктиды и Гренландии, собранного из воздуха высокогорных районов Нью-Мексико и даже из района падения Сихотэ-Алиньского метеорита не содержала доступных определению количеств никеля. В то же время приходится учитывать весьма обоснованное мнение Ходжа и Райта о том, что высокий про-цент никеля / в ряде случаев до 20%/ является единственным надежным критерием космического происхождения той или иной частицы. Очевидно, в случае его отсутствия исследователь должен ориентироваться не на поиски "абсолютных" критериев» а на оценку свойств исследуемого материала, взятых в их совокупности.

Во многих работах отмечается неоднородность химического состава даже одной и той же частицы космического материала в разных ее участках. Так установлено, что никель тяготеет к ядру сферических частиц, там же встречается кобальт. Внешняя оболочка шарика сложена железом и его окисью. Некоторые авторы допускают, что никель существует в виде отдельных пятен в магнетитовом субстрате. Ниже мы приводим цифровые материалы, характеризующие среднее содержание никеля в пыли космического и земного происхождения.

Из таблицы следует, что анализ количественного содержа- ния никеля может оказаться полезным при дифференцировке космической пыли от вулканической.

С этой же точки зрения представляют интерес отношения N i : Fe ; Ni : Co , Ni : Cu , которые в достаточной степени постоянны для отдельных объектов земного и космического происхождения.

изверженные породы -3,5 1,1

При дифференцировке космической пыли от вулканических и индустриальных загрязнений определенную пользу может также оказать изучение количественного содержания Al и К ,которыми богаты вулканические продукты,и Ti и V , являющихся нередкими спутниками Fe в промышленной пыли. Весьма существенно, что в некоторых случаях индустриальная пыль может содержать высокий процент N i . Поэтому крите-рием для отличия некоторых видов космической пыли от земнойдолжно служить не просто высокое содержание N i , a высокоесодержание N i в совокупностис Со и С u / 88,121, 154,178,179/.

Сведения о наличии радиоактивных продуктов космической пыли чрезвычайно скудны. Сообщают об отрицательных резуль- татах проверки космической пыли на радиоактивность,что представляется сомнительным ввиду систематической бомбар- дировки пылевых частиц, находящихся в межпланетном простран- стве,космическими лучами. Напомним, что продукты наведен- ной космической радиации многократно были обнаружены в метеоритах.

Динамика выпадения космической пыли во времени

Согласно гипотезе Paneth /156/,выпадение метеоритов не имело места в отдаленные геологические эпохи / ранее четвертичного времени/. Если это мнение справедливо, то оно должно распространяться и на космическую пыль,или хотя бы на ту часть ее, которую мы называем метеоритной пылью.

Основным аргументом в пользу гипотезы являлось отсут- ствие находок метеоритов в древних породах, в настоящее время,однако,имеется целый ряд находок как метеоритов, так и космической пылевой составляющей в геологических образованиях достаточно древнего возраста / 44,92,122,134, 176-177/, Многие из перечисленных источников цитированы выше,следует добавить, что Мач /142/ обнаружил шарики, по-видимому,космического происхождения в силурийских солях,а Круазье /89/ находил их даже в ордовике.

Распределение сферул по разрезу в глубоководных отложе-ниях изучалось Петтерсоном и Ротши /160/,которые обнару- жили, что никель распределен по разрезу неравномерно, что объясняется, по их мнению,космическими причинами. Позднее было установлено, что наиболее богаты космическим материалом самые молодые слои донных илов, что, по-видимому, связано с происходящими постепенно процессами разрушения космичес- кого вещества. В этой связи естественным является предполо- жение о постепенном уменьшении концентрации космического вещества вниз по разрезу. К сожалению,в доступной нам лите-ратуре мы не встретили достаточно убедительных данных тако- го рода, имеющиеся сообщения отрывочны. Так, Школьник /176/ обнаружил повышенную концентрацию шариков в зоне выветрива- ния отложений мелового возраста,из этого факта им был сделан обоснованный вывод, о том, что сферулы, по-видимому, могут противостоять достаточно суровым условиям,если они могли перенести латеритизацию.

Современные регулярные исследования выпадения космической пыли показывают, что его интенсивность существенно меняется день ото дня /158/.

По-видимому, имеет место определенная сезонная динамика /128,135/, причем максимальная интенсивность выпадения приходится на август-сентябрь, что связывается с метеорными потоками /78,139/,

Следует отметить, что метеорные потоки - не единствен- ная причина массового выпадения космической пыли.

Существует теория о том, что метеорные потоки вызывают атмосферные осадки /82/, метеорные частицы в этом случае являются ядрами конденсации /129/. Некоторые авторы предла- гают собирать космическую пыль из дождевой воды и предлагают свои приспособления для этой цели /194/.

Боуэн /84/ нашел, что пик выпадения осадков запаздывает от максимума метеорной активности примерно на 30 дней, что видно из следующей таблицы.

Эти данные хотя и не являются общепризнанными,однако они заслуживают определенного внимания. Выводы Боуэна подтверж дены на материале Западной Сибири Лазаревым /41/.

Хотя вопрос о сезонной динамике выпадения космической пыли и о её связи с метеорными потоками окончательно не решен,есть веские основания полагать, что подобная законо-мерность имеет место. Так, Круазье /СО/,основываясь на пятилетних систематических наблюдениях,высказывает пред-положение, что два максимума выпадения космической пыли, имевшие место летом 1957 и 1959 гг,коррелируют с метеорны- ми потоками. Летниймаксимум подтвержден Морикубо,сезонная зависимость отмечена также Маршаллом и Крейкеном /135,128/. Следует отметить, что не все авторы склонны относить отме- ченную сезонную зависимость за счет метеорной активности /например,Бриер,85/.

Что касается кривой распределения ежесуточного выпадения метеорной пыли,то она,по-видимому, сильно искажена влия-нием ветров. Об этом,в частности,сообщают Кизилермак и Круазье /126,90/. Хорошая сводка материалов по данному вопросу имеется у Рейнгардта /169/.

Распределение космической пыли на поверхности Земли

Вопрос о распределении космического вещества на поверхнос- ти Земли, как и ряд других, разработан совершенно недоста- точно. Мнения, равно как и фактический материал,сообщаемый различными исследователями,весьма противоречивы и неполны. Один из наиболее крупных специалистов этой области, Петтерсон, определенно высказывал мнение о том,что космическое вещество распределено на поверхности Земли крайне неравномерно/163/. Э то, однако, вступает в противоречие с рядом эксперименталь- ных данных. В частности, де Егер /123/, основываясь на сборах космической пыли, произведенных с помощью липких пластин в районе канадской обсерватории Данлеп, утверждает, что косми-ческое вещество распределено довольно равномерно на больших площадях. Сходное мнение высказано Хантером и Паркиным /121/ на основании исследования космического вещества в донных отложениях Атлантического океана. Ходя /113/ проводил исследования космической пыли в трех удаленных друг от друга точках. Наблюдения велись длительно, в течение целого года. Анализ полученных результатов показал одинаковую скорость накопления вещества во всех трех точках, причем в среднем на 1 см 2 за сутки выпадало примерно 1,1 сферулы размером около трех микрон. Исследования в этой направлении были продолжены в 1956-56 гг. Ходжем и Уилдтом /114/. На этот раз сбора проводились в районах, уделенных друг от друга на очень большие расстояния: в Калифорнии, на Аляске, в Канаде. Рассчитано среднее число сферул, выпавших на еди-ницу поверхности, которое оказалось равным в Калифорнии 1,0, в Аляске - 1,2 и в Канаде - 1,1 частице сферической формы на 1 см 2 в сутки. Распределение сферул по величине было примерно одинаковым для всех трех пунктов, причем 70% составляли образования с диаметром менее 6 микрон, число частиц диаметром более 9 микрон было небольшим.

Можно предполагать, что, по-видимому, выпадение космической пыли на Землю идет, в общем, довольно равномерно, на этом фоне могут наблюдаться определенные отступления от общего правила. Так, можно ожидать наличие определенного широтного эффекта выпадения магнитных частиц с тенденцией к концентра- ции последних в полярных районах. Далее,известно, что концентрация мелкодисперсного космического вещества может быть повышенной в районах выпадения крупных метеоритных масс / Аризонский метеорный кратер,Сихотэ-Алиньский метеорит, возможно,район падения Тунгусского космического тела/.

Первичная равномерность может,однако,в дальнейшем существенно нарушаться в результате вторичного перераспре- деления вещества, причем в одних местах может иметь его накопление,а в других - уменьшение его концентрации. В целом этот вопрос разработан очень слабо,однако предвари- тельные данные,полученные экспедицией K М ET АН СССР /руководитель К.П.Флоренский/ / 72/ позволяют говорить о том, что по крайней мере в ряде случаев содержание косми- ческого вещества в почве может колебаться в широких преде- лах.

Миграц ия космического вещества в биогенос фере

Как ни противоречивы оценки общего количества косми- ческого вещества,выпадающего ежегодно на Землю, можно с уверенностью сказать одно: оно измеряется многими сотнями тысяч,а, может быть, даже и миллионами тонн. Совершенно очевидно,что эта огромная масса материи включается в даль- нейшем в сложную цепь процессов круговорота вещества в природе, постоянно имеющего место в рамках нашей планеты. Космическое веществостановится, таким образом,составной частью нашей планеты,в прямом смысле - веществом земным, что является одним из возможных каналов влияния космичес- кой среды на биогеносферу.Именно с этих позиций проблема космической пыли интересовала основоположника современной биогеохимии ак. Вернадского. К сожалению, работа в этом направлении,по существу,еще всерьез не начата.Поэтому мы вынуждены ограничиться лишь констатацией нескольких фактов,имеющих, по-видимому,отношение к затронутому вопросу.Имеется ряд указаний нато, что глубоководные осадки,удаленные от источников сноса материала и обладающие малой скоростью накопления,относительнобогаты, Со и Си. Многие исследователи приписывают этим элементам космичес- кое происхождение. По-видимому, различные виды частиц кос- мической пыли с разной скоростью включаются в круговорот веществ в природе. Некоторые виды частиц в этом отношении очень консервативны,о чем свидетельствуют находки магнетитовых шариков в древних осадочных породах.Скорость разру- шения частиц может,очевидно,зависеть не только от их природы,но и от условий окружающей среды,в частности, значения ее РН.В высшей степени вероятно, что элементы, выпадающие на Землю в составе космической пыли, могут в дальнейшем включатьсяв состав растительных и животных организмов,населяющих Землю. В пользу этого предположения говорят,в частности,некоторые данные о химическом соста- ве растительности в районе падения Тунгусского метеорита. Все это однако,представляет собой лишь первые наметки, первые попытки подхода не столькок решению,сколько к постановке вопроса в этой плоскости.

В последнее время имеется тенденция к еще большим оценкам вероятной массы выпадающей космической пыли. От дельные исследователи оценивают ее в 2.410 9 тонн /107а/.

Перспективы изучения косми- ческой пыли

Все, что было сказано в предыдущих разделах работы, позволяет с достаточным основанием говорить о двух вещах: во-первых,о том, что изучение космической пыли всерьез только начинается и,во-вторых, что работа в этом разделе науки оказывается чрезвычайно плодотворной для решения многих вопросов теории / в перспективе, может быть,и для практики/. Исследователя, работающего в этой области,привле- кает прежде всего, огромное разнообразие проблем, так или иначе связанных с выяснением взаимоотношений в системе Земля -космос.

Как нам представляется, дальнейшее развитие учения о космической пыли должно идти,главным образом,по следующим основным направлениям:

1. Изучение околоземного пылевого облака,его простран- ственного расположения,свойств пылевых частиц,входящих в его состав, источников и путей его пополнения и убыли, взаимодействие с радиационными поясами.Эти исследования могут быть осуществлены в полном объеме с помощью ракет, искусственных спутников,а в дальнейшем - межпланетных кораблей и автоматических межпланетных станций.
2. Несомненный интерес для геофизики представляет косми ческая пыль,проникающая в атмосферу на высоте 80-120 км ,в частности,ее роль в механизме возникновения и развития таких явлений,как свечение ночного неба, изменение поляри- зации дневного света,флюктуации прозрачности атмосферы, развитие серебристых облаков и светлых полос Гоффмейстера, зоревых и сумеречных явлений, метеорных явлений в атмосфере Земли.Особый интерес представляет изучение степени корре- ляции между перечисленными явлениями. Неожиданные аспекты
космических влияний могут быть раскрыты, по-видимому,в ходе дальнейшего изучения взаимосвязи процессов,имеющих место в нижних слоях атмосферы - тропосферы,с проникнове- нием в последнюю космического вещества. Самое серьезное внимание должно быть уделено проверке гипотезы Боуэна о связи выпадения осадков с метеорными потоками.
3. Несомненный интерес для геохимиков представляет изучение распределения космического вещества на поверхности Земли,влияние на этот процесс конкретных географических, климатических,геофизических и других условий, свойственных
тому или иному району земного шара. До сих пор совершенно не изучен вопрос о влиянии магнитного поля Земли на процесс накопления космического вещества, между тем,в этой области, вероятно, могут быть интересные находки,в особенности, если строить исследования с учетом палеомагнитных данных.
4. Принципиальный интерес и для астрономов и для геофизиков,не говоря уже о космогонистах широкого профиля, имеет вопрос о метеорной активности в отдаленные геологичес- кие эпохи. Материалы, которые будут получены в ходе этой
работы, могут быть,вероятно,в дальнейшем использованы в целях выработки дополнительных методов стратификации донных, ледниковых и немых осадочных отложений.
5. Существенным направлением работы является изучение морфологических,физических, химических свойств космической составляющей земных осадков,отработка методов отличия кос мической пыли от вулканической и индустриальной,исследования изотопного состава космической пыли.
6.Поиски в космической пыли органических соединений. Представляется вероятным,что изучение космической пыли будет способствовать решению следующих теоретических вопросов:

1. Изучение процесса эволюции космических тел,в част- ности,Земли и солнечной системы в целом.
2. Изучению движения, распределения и обмена космической материи в солнечной системе и галактике.
3. Выяснению роли галактической материи в солнечной системе.
4. Изучению орбит и скоростей космических тел.
5. Разработка теории взаимодействия космических тел с Землей.
6. Расшифровке механизма ряда геофизических процессов в атмосфере Земли,несомненно, связанных с космическими явлениями.
7. Изучению возможных путей космических влияний на биогеносферу Земли и других планет.

Само собой разумеется, что разработка даже тех проблем, которые перечислены выше,а ими далеко не исчерпывается весь комплекс связанных с космической пылью вопросов,воз- можна только при условии широкого комплексирования и объеди- нения усилий специалистов различных профилей.

ЛИТЕРАТУРА

1. АНДРЕЕВ В.Н.- Загадочное явление.Природа, 1940.
2. АРРЕНИУС Г.С - Осадконакопление на океаническом дне. Сб. Геохимические исследования, ИЛ. М.,1961.
3. АСТАПОВИЧ И.С.- Метеорные явления в атмосфере Земли. М.,1958.
4. АСТАПОВИЧ И.С.- Сводка наблюдений серебристых облаков в России и в СССР с1885 по1944 гг.Труды 6 совещания по серебристымоблакам. Рига,1961.
5. БАХАРЕВ А.М.,ИБРАГИМОВ Н.,ШОЛИЕВ У.- Масса метеор ной материивыпадающей на Землю в течение года. Бюлл. Всес. астрономогеод. об-ва 34, 42-44,1963.
6. БГАТОВ В.И., ЧЕРНЯЕВ Ю.А. -О метеорной пыли в шлиховых пробах. Метеоритика,в.18,1960.
7. БИРД Д.Б. - Распределение межпланетной пыли.Сб. Ультра фиолетовое излучение солнца и межпланетная среда. Ил., М., 1962.
8. БРОНШТЭН В.А. - 0 природе серебристых облаков.Труды VI сове
9. БРОНШТЭН В.А. - Ракеты изучают серебристые облака. При рода, № 1,95-99,1964.
10. БРУВЕР Р.Э. - О поисках вещества Тунгусского метеорита. Проблема Тунгусского метеорита,в.2,в печати.
И.ВАСИЛЬЕВ Н.В., ЖУРАВЛЕВ В.К.,ЗАЗДРАВНЫХ Н.П.,ПРИХОДЬ КО Т.В., ДЕМИН Д. В., ДЕМИНА I . H .- 0 связи серебристых облаков с некоторыми параметрами ионосферы. Доклады III Сибирской конф. по математике и меха- нике.Томск, 1964.
12. ВАСИЛЬЕВ Н.В.,КОВАЛЕВСКИЙ А.Ф.,ЖУРАВЛЕВ В.К.-Об аномальных оптических явлениях лета 1908 года. Еюлл.ВАГО, № 36,1965.
13. ВАСИЛЬЕВ Н.В.,ЖУРАВЛЕВ В. К., ЖУРАВЛЕВА Р. К., КОВАЛЕВСКИЙ А.Ф., ПЛЕХАНОВ Г.Ф.- Ночные светящиеся облака и оптические аномалии,связанные с паде- нием Тунгусскогометеорита. Наука, М., 1965.
14. ВЕЛТМАНН Ю. К.- О фотометрии серебристых облаков по нестандартизованным снимкам. Труды VI сове- щания по серебристым облакам. Рига,1961.
15. ВЕРНАДСКИЙ В.И. - Об изучении космической пыли. Миро ведение,21, № 5, 1932,собр.соч.,т.5, 1932.
16. ВЕРНАДСКИЙ В.И.- О необходимости организации научной работы по космической пыли. Проблемы Арктики, № 5,1941,Собр. соч.,5,1941.
16а ВИЙДИНГ Х.А. - Метеорная пыль в низах кембрийских песчаников Эстонии. Метеоритика,вып.26, 132-139, 1965.
17. ВИЛЛМАН Ч.И. - Наблюдения серебристых облаков в северо-- западной части Атлантики и на территории Эсто- нии в 1961г. Астрон.циркуляр, № 225, 30 сент. 1961г.
18. ВИЛЛМАН Ч.И.- Об интерпретации результатов поляримет рии света серебристых облаков. Астрон.циркуляр, № 226,30 октября,1961
19. ГЕББЕЛЬ А.Д.- О большом падении аэролитов,бывшем в тринадцатом веке в Устюге Великом,1866.
20. ГРОМОВА Л.Ф.- Опыт получения истинной частоты появ ления серебристых облаков. Астрон.циркуляр., 192,32-33,1958.
21. ГРОМОВА Л.Ф. - Некоторые данные о частоте появлений серебристых облаков в западной половине террито- рии СССР. Международный геофицический год.изд. ЛГУ,1960.
22. ГРИШИН Н.И. - К вопросу о метеорологических условиях появления серебристых облаков. Труды VI Сове- щания по серебристым облакам. Рига,1961.
23. ДИВАРИ Н.Б.-О сборе космической пыли на леднике Тут-Су /сев.Тянь-Шань/. Метеоритика, в.4,1948.
24. ДРАВЕРТ П.Л.- Космическое облако над Шало-Ненецким округом. Омская область,№ 5,1941.
25. ДРАВЕРТ П.Л.- О метеорной пыли 2.7. 1941в Омске и некоторые мысли о космической пыли вообще. Метеоритика,в.4,1948.
26. ЕМЕЛЬЯНОВ Ю.Л. - О загадочной "сибирской тьме" 18 сентября 1938 года. Проблема Тунгусского метеорита,вып.2.,в печати.
27. ЗАСЛАВСКАЯ Н.И., ЗОТКИН И. Т., КИРОВА О.А.- Распреде- ление по размерам космических шариков из района Тунгусского падения. ДАН СССР,156,1,1964.
28. КАЛИТИН Н.Н.- Актинометрия. Гидрометеоиздат,1938.
29. КИРОВА О.А. - 0 минералогическом изучении проб почвы из района падения Тунгусского метеорита,собран- ных экспедицией 1958 г. Метеоритика,в.20,1961.
30. КИРОВА О.И.- Поиски распыленного метеоритного вещества в районе падения Тунгусского метеорита. Тр. ин-та геологии АН Эст. ССР,П,91-98,1963.
31. КОЛОМЕНСКИЙ В. Д., ЮДИН И.А. - Минеральный состав коры плавления метеорита Сихотэ-Алинь,а также метеоритной и метеорной пыли. Метеоритика.в.16, 1958.
32. КОЛПАКОВ В.В.-Загадочный кратер на Па томском нагорье. Природа, № 2, 1951 .
33. КОМИССАРОВ О.Д., НАЗАРОВА Т.Н.и др.– Исследование микрометеоритов на ракетах и спутниках. Сб. Искусств. спутники Земли,изд.АН СССР,в.2, 1958.
34.КРИНОВ Е.Л.- Форма и поверхностная структура коры
плавления индивидуальных экземпляров Сихотэ- Алиньского железного метеоритного дождя. Метеоритика,в.8,1950.
35. КРИНОВ Е.Л.,ФОНТОН С.С. - Обнаружение метеорной пыли на месте падения Сихотэ - Алиньского железного метеоритного дождя. ДАН СССР, 85, № 6, 1227- 12-30,1952.
36. КРИНОВ Е.Л.,ФОНТОН С.С.- Метеорная пыль с места падения Сихотэ -Алиньского железного метеоритного дождя. Метеоритика,в. II ,1953.
37. КРИНОВ Е.Л. - Некоторые соображения о сборе метеоритного вещества в полярных странах. Метеоритика,в.18, 1960.
38. КРИНОВ Е.Л.. - К вопросу о распылении метеорных тел. Сб. Исследование ионосферы и метеоров. АН СССР, I 2,1961 .
39. КРИНОВ Е.Л. - Метеоритная и метеорная пыль, микрометео риты.Сб.Сихотэ - Алиньский железный метеорит- ный дождь.АН СССР,т.2,1963.
40. КУЛИК Л.А.- Бразильский двойник Тунгусского метеорита. Природа и люди,с. 13-14,1931.
41. ЛАЗАРЕВ Р.Г.- О гипотезе Е.Г.Боуэна /по материалам наблюдений в Томске/. Доклады третьей Сибирской конференции по математике и механике. Томск,1964.
42. ЛАТЫШЕВ И. H .- О распределении метеорной материи в солнечной системе.Изв.АН Туркм.ССР,сер.физ. техн.хим.и геол.наук, № 1,1961.
43. ЛИТТРОВ И.И.-Тайны неба. Изд.Акц.об-ва Брокгауз- Ефрон.
44. МАЛЫШЕК В.Г.- Магнитные шарики в нижнетретичных образованиях южн. склона СЗ Кавказа. ДАН СССР, с. 4,1960.
45. МИРТОВ Б.А.- Метеорная материяи некоторые вопросы геофизики высоких слоев атмосферы. Сб.Искусствен-ные спутники Земли, АН СССР,в.4,1960.
46. МОРОЗ В.И. - О "пылевой оболочке" Земли. Сб. Искусств. спутники Земли, АН СССР,в.12,1962.
47. НАЗАРОВА Т.Н. - Исследование метеорных частиц на третьем советском искусственномспутнике Земли. Сб. искусств. спутники Земли, АН СССР,в.4, 1960.
48. НАЗАРОВА Т.Н.- Исследование метеорной пыли на раке тах и искусственных спутниках Земли.Сб. Искусств. спутники Земли.АН СССР,в.12,1962.
49. НАЗАРОВА Т.Н. - Результаты исследования метеорного вещества с помощью приборов, установленных на космических ракетах. Сб. Искусств. спутники Земли.в.5,1960.
49а. НАЗАРОВА Т.Н.- Исследование метеорной пыли с помощью ракет и спутников.В сб."Космические исследования", М., 1-966,т. IV .
50.ОБРУЧЕВ С.В. - Из статьи Колпакова"Загадочный кратер на Патомском нагорье". Природа, № 2,1951.
51. ПАВЛОВА Т.Д. - Видимое распределение серебристых облаков по материалам наблюдений 1957-58 гг. Труды У1Совещания посеребристым облакам. Рига,1961.
52. ПОЛОСКОВ С.М., НАЗАРОВА Т.Н.- Исследование твердой составляющей межпланетного вещества с помощью ракет и искусственных спутников Земли. Успехи физ. наук,63, № 16,1957.
53. ПОРТНОВ A . M . - Кратер на Патомском нагорье.Природа, 2,1962.
54. РАЙЗЕР Ю.П. - О конденсационном механизме образования космической пыли. Метеоритика,в.24,1964.
55. РУСКОЛ E .Л.- О происхождении сгущения межпланетной пыли вокруг Земли. Сб. Искусств.спутники Земли. в.12,1962.
56. СЕРГЕЕНКО А.И.- Метеорная пыль в четвертичных отложе ниях бассейна верхнего течения р.Индигирки. В кн. Геология россыпей Якутии. М, 1964.
57. СТЕФОНОВИЧ С.В.- Выступление.В тр. III съезде Всесоюзн. астр. геофиз. об-ва АН СССР,1962.
58. УИППЛ Ф.- Замечания о кометах, метеорах и планетной эволюции. Вопросы космогонии, АН СССР,т.7, 1960.
59. УИППЛ Ф. - Твердые частицы в солнечной системе. Сб. Экспер. исслед. околоземного космического простран- ства.ИЛ. М., 1961.
60. УИППЛ Ф. - Пылевая материя в околоземном космическом пространстве. Сб. Ультрафиолетовое излучение Солнца и межпланетная среда. ИЛ М.,1962.
61. ФЕСЕНКОВ В.Г. - К вопросу о микрометеоритах. Метеори тика, в. 12,1955.
62. ФЕСЕНКОВ В.Г.- Некоторые проблемы метеоритики. Метеоритика,в.20,1961.
63. ФЕСЕНКОВ В.Г. - О плотности метеорной материи в межпланетном пространстве в связи с возможностью существования пылевого облака вокруг Земли. Астрон.журнал, 38, № 6,1961.
64. ФЕСЕНКОВ В.Г.- Об условиях падения на Землю комет и метеоров.Тр. ин-та геологии АН Эст. ССР, XI , Таллинн,1963.
65. ФЕСЕНКОВ В.Г.- О кометной природе Тунгусского метео рита. Астрон.журнал,ХХХ VIII ,4,1961.
66. ФЕСЕНКОВ В.Г.- Не метеорит,а комета. Природа,№ 8 , 1962.
67. ФЕСЕНКОВ В.Г. - Об аномальных световых явлениях,свя занных с падением Тунгусского метеорита. Метеоритика,в.24,1964.
68. ФЕСЕНКОВ В.Г.- Помутнениеатмосферы,произведенное падением Тунгусскогометеорита. Метеоритика, в.6,1949.
69. ФЕСЕНКОВ В.Г.- Метеорная материя в междупланетном пространстве. М., 1947.
70.ФЛОРЕНСКИЙ К.П.,ИВАНОВ А. В., ИЛЬИН Н.П.и ПЕТРИКОВА M .Н. -Тунгусское падение 1908 г.и некоторые вопросы дифференциациивещества космических тел. Тезисы докл. XX Международного конгресса по теоретической и прикладной химии. Секция СМ., 1965.
71. ФЛОРЕНСКИЙ К.П. - Новое в изучении Тунгусского метео-
рита 1908 г.Геохимия, 2,1962.
72. ФЛ ОРЕНСКИЙ К.П .- Предварительныерезультаты Тунгус ской метеоритной комплексной экспедиции 1961г. Метеоритика,в.23,1963.
73. ФЛОРЕНСКИЙ К.П. - Проблема космической пыли и совре менное состояние изучения Тунгусского метеорита. Геохимия, № 3,1963.
74. ХВОСТИКОВ И.А. - О природе серебристых облаков.В сб. Некоторые проблемы метеорол., № 1, 1960.
75. ХВОСТИКОВ И.А. - Происхождение серебристых облаков и температура атмосферы в мезопаузе. Тр. VII Совещания по серебристым облакам. Рига,1961.
76. ЧИРВИНСКИЙ П.Н.,ЧЕРКАС В.К.- Почему так трудно до казать присутствие космической пыли на земной поверхности. Мироведение, 18, № 2,1939.
77. ЮДИН И.А. - О нахождении метеорной пыли в районе паде ния каменного метеоритного дождя Кунашак. Метеоритика, в.18, 1960.

Здравствуйте. На этой лекции мы поговорим с вами о пыли. Но не о той, которая скапливается в ваших комнатах, а о космической пыли. Что же это такое?

Космическая пыль - это очень мелкие частицы твердого вещества, находящиеся в любой части Вселенной, в том числе, метеоритная пыль и межзвездное вещество, способное поглощать звездный свет и образующее темные туманности в галактиках. Сферические частицы пыли диаметром около 0,05 мм находят в некоторых морских отложениях; считается, что это остатки тех 5000 тонн космической пыли, которые ежегодно выпадают на земном шаре.

Ученые считают, что космическая пыль образуется не только от столкновения, разрушения мелких твердых тел, но и вследствие сгущения межзвездного газа. Космическую пыль различают по ее происхождению: пыль бывает межгалактическая, межзвездная, межпланетная и околопланетная (обычно в кольцевой системе).

Космические пылинки возникают в основном в медленно истекающих атмосферах звезд - красных карликов, а также при взрывных процессах на звездах и бурном выбросе газа из ядер галактик. Другими источниками образования космической пыли являются планетарные и протозвездные туманности, звездные атмосферы и межзвездные облака.

Целые облака космической пыли, которые находятся в слое звезд, образующих Млечный Путь, мешают нам наблюдать дальние звездные скопления. Такое звездное скопление, как Плеяды, полностью погружено в пылевое облако. Самые яркие звезды, которые находятся в этом скоплении, освещают пыль, как фонарь освещает ночью туман. Космическая пыль может светить только отраженным светом.

Синие лучи света, проходя сквозь космическую пыль, ослабляются сильнее, чем красные, поэтому свет звезд, доходящий к нам, кажется желтоватым и даже красноватым. Целые области мирового пространства остаются закрытыми для наблюдения именно из-за космической пыли.

Пыль межпланетная, во всяком случае, в сравнительной близости от Земли - материя довольно изученная. 3аполняющая все пространство Солнечной системы и сконцентрированная в плоскости ее экватора, она родилась по большей части в результате случайных столкновений астероидов и разрушения комет, приблизившихся к Солнцу. Состав пыли, по сути, не отличается от состава падающих на Землю метеоритов: исследовать его очень интересно, и открытий в этой области предстоит сделать еще немало, но особенной интриги тут, похоже, нет. Зато благодаря именно этой пыли в хорошую погоду на западе сразу после заката или на востоке перед восходом солнца можно любоваться бледным конусом света над горизонтом. Это так называемый зодиакальный - солнечный свет, рассеянный мелкими космическими пылинками.

Куда интереснее пыль межзвездная. Отличительная ее особенность - наличие твердого ядра и оболочки. Ядро состоит, по-видимому, в основном из углерода, кремния и металлов. А оболочка - преимущественно из намерзших на поверхность ядра газообразных элементов, закристаллизовавшихся в условиях «глубокой заморозки» межзвездного пространства, а это около 10 кельвинов, водорода и кислорода. Впрочем, бывают в ней примеси молекул и посложнее. Это аммиак, метан и даже многоатомные органические молекулы, которые налипают на пылинку или образуются на ее поверхности во время скитаний. Часть этих веществ, разумеется, улетает с ее поверхности, например, под действием ультрафиолета, но процесс этот обратимый - одни улетают, другие намерзают или синтезируются.

Если галактика сформировалась, то откуда в ней берется пыль - в принципе ученым понятно. Наиболее значительные ее источники - новые и сверхновые, которые теряют часть своей массы, «сбрасывая» оболочку в окружающее пространство. Кроме того, пыль рождается и в расширяющейся атмосфере красных гигантов, откуда она буквально выметается давлением излучения. В их прохладной, по меркам звезд, атмосфере (около 2,5 - 3 тысяч кельвинов) довольно много сравнительно сложных молекул.
Но вот загадка, не разгаданная до сих пор. Всегда считалось, что пыль - продукт эволюции звезд. Иными словами - звезды должны зародиться, просуществовать какое-то время, состариться и, скажем, в последней вспышке сверхновой произвести пыль. Только вот что появилось раньше - яйцо или курица? Первая пыль, необходимая для рождения звезды, или первая звезда, которая почему-то родилась без помощи пыли, состарилась, взорвалась, образовав самую первую пыль.
Что было вначале? Ведь когда 14 млрд. лет назад произошел Большой взрыв, во Вселенной были только водород и гелий, никаких других элементов! Это потом из них стали зарождаться первые галактики, огромные облака, а в них - первые звезды, которым надо было пройти долгий жизненны й путь. Термоядерные реакции в ядрах звезд должны были «сварить» более сложные химические элементы, превратить водород и гелий в углерод, азот, кислород и так далее, а уж после этого звезда должна была выбросить все это в космос, взорвавшись или постепенно сбросив оболочку. Затем этой массе нужно было охладиться, остыть и, наконец, превратиться в пыль. Но уже через 2 млрд. лет после Большого взрыва, в самых ранних галактиках, пыль была! С помощью телескопов ее обнаружили в галактиках, отстоящих от нашей на 12 млрд. световых лет. В то же время 2 млрд. лет - слишком маленький срок для полного жизненного цикла звезды: за это время большинство звезд не успевает состариться. Откуда в юной Галактике взялась пыль, если там не должно быть ничего, кроме водорода и гелия, - тайна.

Посмотрев на время, профессор слегка улыбнулся.

Но эту тайну вы попробуете разгадать дома. Запишем задание.

Домашнее задание.

1. Попробуйте порассуждать, что появилось раньше, первая звезда или все же пыль?

Дополнительное задание.

1. Доклад про любой вид пыли (межзвездная, межпланетная, околопланетная, межгалактическая)

2. Сочинение. Представьте себя ученым, которому поручили исследовать космическую пыль.

3. Картинки.

Домашнее задание для студентов:

1. Зачем в космосе нужна пыль?

Дополнительное задание.

1. Доклад про любой вид пыли. Бывшие ученики школы правила помнят.

2. Сочинение. Исчезновение космической пыли.

3. Картинки.

Во вселенной существуют миллиарды звезд и планет. И если звезда представляет собой пылающую сферу газа, то планеты, такие как Земля, составлены из твердых элементов. Планеты формируются в облаках пыли, которые циркулируют вокруг недавно сформировавшейся звезды. В свою очередь, зерна этой пыли составлены из таких элементов, как углерод, кремний, кислород, железо и магний. Но откуда же частицы космической пыли берутся? В новом исследовании, проведенном в Институте Нильса Бора в Копенгагене, показано, что зерна пыли могут не только сформироваться в гигантских взрывах сверхновых, они могут так же пережить последующие ударные волны различных взрывов, которые воздействуют на пыль.

Компьютерное изображение того, как формируется космическая пыль при взрывах сверхновых звезд. Источник: ESO/M. Kornmesser

То, как космическая пыль была сформирована, долго было тайной для астрономов. Сами по себе элементы пыли образуются в пылающем водородном газе в звездах. Атомы водорода соединяются друг с другом во все боле и более тяжелые элементы. В результате этого звезда начинает испускать излучение в виде света. Когда весь водород будет исчерпан и не получится больше извлекать энергию, звезда умирает, а ее оболочка улетает в космическое пространство, которая формирует различные туманности, в которых опять могут рождаться молодые звезды. Тяжелые элементы формируются, прежде всего, в сверхновых, прародителями которых являются массивные звезды, погибающие в гигантском взрыве. Но как одиночные элементы слипаются вместе чтобы сформировать космическую пыль – оставалось загадкой.

“Проблема состояла в том, что даже если бы пыль формировалась вместе с элементами при взрывах сверхновых звезд, само по себе это событие такое сильное, что эти мелкие зерна просто не должны были выжить. Но космическая пыль существует, причем ее частички могут быть совершенно разных размеров. Наше исследование проливает свет на эту проблему”, – профессор Йенс Хйорт, глава центра Темной космологии в Институте Нильса Бора.

Снимок телескопа Хаббл необычной карликовой галактики, в которой возникла яркая сверхновая SN 2010jl. Снимок был получен до ее появления, поэтому стрелкой показана ее звезда-прародитель. Взорвавшаяся звезда была очень массивной, приблизительно 40 солнечных масс. Источник: ESO

В исследованиях космической пыли ученые наблюдают за сверхновыми с помощью астрономического инструмента X-shooter, установленного на комплексе Очень большой телескоп (VLT) в Чили. Он обладает удивительной чувствительностью, а три спектрографа, входящие в его состав. могут наблюдать весь световой диапазон сразу, от ультрафиолетового и видимого до инфракрасного. Хйорт объясняет, что сначала они ожидали появления “правильного” взрыва сверхновой звезды. И вот, когда это произошло, началась кампания по ее наблюдению. Наблюдаемая звезда была необычайно яркой, в 10 раз ярче обычно средней сверхновой, а ее масса была в 40 раз больше солнечной. Всего наблюдение за звездой заняло у исследователей два с половиной года.

“Пыль поглощает свет, а пользуясь нашими данными мы смогли вычислить функцию, которая могла бы нам рассказать о количестве пыли, ее составе и размере зерен. В результаты мы обнаружили действительно нечто захватывающее”, – Криста Гол.

Первый шаг на пути формирования космической пыли – мини взрыв, в котором звезда выбрасывает в космос материал, содержащий водород, гелий и углерод. Это газовое облако становится своеобразной раковиной вокруг звезды. Еще немного подобных вспышек и раковина становится плотнее. Наконец, звезда взрывается, и плотное газовое облако полностью окутывает ее ядро.

“Когда звезда взрывается, ударная взрывная волна сталкивается с плотным газовым облаком как кирпич, налетевший на бетонную стену. Все это происходит в газовой фазе при невероятных температурах. Но то место, куда ударил взрыв, становится плотным и остывает до 2000 градусов Цельсия. При такой температуре и плотности элементы могут образовать ядро и сформировать твердые частицы. Мы обнаружили зерна пыли размерами в один микрон, что является очень большим значением для этих элементов. С такими размерами они вполне смогут пережить свое будущее путешествие сквозь галактику”.

Таким образом, ученые полагают, что нашли ответ на вопрос о том, как формируется и живет космическая пыль.

Здравствуйте!

Сегодня мы поговорим на весьма интереснейшую тему, связанною с такой наукой, как астрономия! Речь пойдёт о космической пыли. Предполагаю, что многие впервые узнали о ней. Значит, нужно рассказать о ней всё, что только мне известно! В школе - астрономия была моим одним из любимых предметов, скажу больше - самым любимым, потому, именно по астрономии я сдавала экзамен.

Хотя мне и выпал 13 билет, который был самым сложным, но с экзаменом я сдала прекрасно и осталась довольна!

Ежели сказать совсем доступно, что такое космическая пыль, то можно представить все-все осколки, которые только есть во Вселенной от космического вещества, например, от астероидов. А Вселенная ведь - это не только Космос! Не путайте, дорогие мои и хорошие! Вселенная - это весь наш мир - весь наш огромный Земной шар!

Как образуется космическая пыль?

Например, космическая пыль может образовываться оттого, когда в Космосе сталкиваются два астероида и при столкновении, происходит процесс их разрушения на мелкие частицы. Многие учёные склоняются и к тому, что её образование связано с тем, когда сгущается межзвездный газ.

Как возникает космическая пыль?

Как она образуется, мы с вами только выяснили, теперь узнаем о том, как она возникает. Как правило, эти пылиночки просто возникают в атмосферах красных звездочек, если вы слышали, такие красные звезды называют ещё - звёздами карликами; возникают, когда на звёздах происходят различные взрывы; когда активно выбрасывается газ из самих ядер галактик; протозвёздная и планетарная туманность - тоже способствует её возникновению, впрочем, как и сама звёздная атмосфера и межзвездные облака.

Какие виды космической пыли можно различать, учитывая её происхождение?

Что касается именно видов, относительно происхождения, то выделим следующие виды:

межзвездный вид пыли, когда на звездах происходит взрыв, то происходит огромный выброс газа и мощный выброс энергии

межгалактический,

межпланетный,

околопланетный: появилась, как "мусор", остатки, после образования иных планет.

Есть виды, которые классифицируются не по происхождению, а по внешним признакам?

    кружочки чёрного цвета, небольшие, блестящие

    кружочки чёрного цвета, но покрупнее размером, имеющие шероховатую поверхность

    кружочки шарики чёрно-белого цвета, кои в своём составе имеют силикатную основу

    кружочки, которые состоят из стекла и металла, они разнородные, и небольшие (20 нм)

    кружочки похожие на порошочек магнетита, они чёрные и похожи на чёрный песок

    пепловидноые и шлакообразные кружочки

    вид, который образовался от столкновения астероидов, комет, метеоритов

Удачный вопрос! Конечно, может. И от столкновения метеоритов тоже. От столкновения любых небесных тел возможно её образование.

Вопрос об образовании и возникновении космической пыли до сих пор является спорным, и разные ученые выдвигают свои точки зрения, но вы можете придерживаться одной или двух близких вам точек зрения в этом вопросе. Например, той, что более понятна.

Ведь даже относительно её видов нет абсолютно точной классификации!

шарики, основа коих является однородной; их оболочка является окисленной;

шарики, основа коих является силикатной; так как они имеют вкрапления газа, то вид их часто похож на шлаки либо на пену;

шарики, основа коих является металлической с ядром из никеля и кобальта; оболочка тоже окисленная;

кружочки наполнение коих является полым.

они могут быть ледяными, а оболочка их состоит из легких элементов; в крупных ледяных частицах есть даже атомы, имеющие магнитные свойства,

кружочки с силикатными и графитными вкраплениями,

кружочки, состоящие из оксидов, в основе коих есть двухатомные окислы:

Космическая пыль до конца не изучена! Очень много открытых вопросов, ибо они являются спорными, но, думаю, основные представления всё-таки у нас теперь имеются!

Видео обзор

Все(5)

В течение 2003–2008гг. группа российских и австрийских ученых при участии Хайнца Кольманна, известного палеонтолога, куратора Национального парка «Айзенвурцен», проводила изучение катастрофы, случившейся 65 млн. лет назад, когда на Земле вымерло более 75% всех организмов, в том числе и динозавры. Большинство исследователей считают, что вымирание было связано с падением астероида, хотя есть и другие точки зрения.

Следы этой катастрофы в геологических разрезах представлены тонким слоем черных глин мощностью от 1 до 5 см. Один из таких разрезов находится в Австрии, в Восточных Альпах, в Национальном парке недалеко от маленького городка Гамс, расположенного в 200 км к юго-западу от Вены. В результате изучения образцов из этого разреза c помощью сканирующего электронного микроскопа обнаружены необычные по форме и составу частицы, которые в наземных условиях не образуются и относятся к космической пыли.

Космическая пыль на Земле

Впервые следы космического вещества на Земле обнаружены в красных глубоководных глинах английской экспедицией, исследовавшей дно Мирового океана на судне «Челленджер» (1872–1876). Их описали Меррей и Ренард в 1891 г. На двух станциях в южной части Тихого океана при драгировании с глубины 4300 м были подняты образцы железомарганцевых конкреций и магнитных микросфер диаметром до 100 мкм, получивших впоследствии название «космические шарики». Однако детально микросферы железа, поднятые экспедицией на «Челленджере», были исследованы только в последние годы. Выяснилось, что шарики на 90% состоят из металлического железа, на 10% – из никеля, а их поверхность покрыта тонкой корочкой оксида железа.

Рис. 1. Монолит из разреза Гамс 1, подготовленный для отбора образцов. Латинскими буквами обозначены слои разного возраста. Переходный слой глины между меловым и палеогеновым периодами (возраст около 65 млн. лет), в котором найдено скопление металлических микросфер и пластин отмечен буквой «J». Фото А.Ф. Грачёва


С обнаружением загадочных шариков в глубоководных глинах, собственно, и связано начало изучения космического вещества на Земле. Однако взрыв интереса исследователей к этой проблеме произошел после первых запусков космических аппаратов, с помощью которых стало возможным отбирать лунный грунт и образцы пылевых частиц из разных участков Солнечной системы. Важное значение имели также работы К.П. Флоренского (1963), изучавшего следы Тунгусской катастрофы, и Е.Л. Кринова (1971), исследовавшего метеорную пыль на месте падения Сихотэ-Алиньского метеорита.

Интерес исследователей к металлическим микросферам привел к тому, что их стали обнаруживать в осадочных породах разного возраста и происхождения. Металлические микросферы найдены во льдах Антарктики и Гренландии, в глубоководных океанических осадках и марганцевых конкрециях, в песках пустынь и приморских пляжей. Часто встречаются они в метеоритных кратерах и рядом с ними.

В последнее десятилетие металлические микросферы внеземного происхождения находят в осадочных породах разного возраста: от нижнего кембрия (около 500 млн. лет назад) до современных образований.

Данные о микросферах и других частицах из древних отложений позволяют судить об объемах, а также о равномерности или неравномерности поступления космического вещества на Землю, об изменении состава поступавших на Землю частиц из космоса и о первоисточниках этого вещества. Это важно, поскольку эти процессы влияют на развитие жизни на Земле. Многие из этих вопросов еще далеки от разрешения, однако накопление данных и всестороннее их изучение, несомненно, позволит ответить на них.

Сейчас известно, что общая масса пыли, обращающейся внутри земной орбиты, порядка 1015 т. На поверхность Земли ежегодно выпадает от 4 до 10 тыс. т космического вещества. 95% падающего на поверхность Земли вещества составляют частицы размером 50–400 мкм. Вопрос же о том, как меняется во времени скорость поступления космического вещества на Землю, остается спорным до сих пор, несмотря на множество исследований, проведенных в последние 10 лет.

Исходя из размеров частиц космической пыли, в настоящее время выделяют собственно межпланетную космическую пыль размером менее 30 мкм и микрометеориты крупнее 50 мкм. Еще раньше Е.Л. Кринов предложил мельчайшие оплавленные с поверхности осколочки метеорного тела называть микрометеоритами.

Строгие критерии разграничения космической пыли и метеоритных частиц пока не разработаны, и даже на примере изученного нами разреза Гамс показано, что металлические частицы и микросферы разнообразнее по форме и составу, чем предусмотрено имеющимися классификациями. Практически идеальная сферическая форма, металлический блеск и магнитные свойства частиц рассматривались как доказательство их космического происхождения. По мнению геохимика Э.В. Соботовича, «единственным морфологическим критерием оценки космогенности исследуемого материала является наличие оплавленных шариков, в том числе магнитных». Однако помимо формы, крайне разнообразной, принципиально важен химический состав вещества. Исследователи выяснили, что наряду с микросферами космического происхождения существует огромное количество шариков иного генезиса – связанные с вулканической деятельностью, жизнедеятельностью бактерий или метаморфизмом. Известны данные о том, что железистые микросферы вулканогенного происхождения значительно реже бывают идеальной сферической формы и к тому же имеют повышенную примесь титана (Ti) (более 10%).

Российско-австрийская группа геологов и съемочная группа Венского телевидения на разрезе Гамс в Восточных Альпах. На переднем плане – А.Ф.Грачев

Происхождение космической пыли

Вопрос о происхождении космической пыли по-прежнему предмет дискуссии. Профессор Э.В. Соботович полагал, что космическая пыль может представлять собой остатки первоначального протопланетного облака, против чего в 1973 г. возражали Б.Ю. Левин и А.Н. Симоненко, считая, что мелкодисперсное вещество не могло долго сохраняться (Земля и Вселенная, 1980, № 6).

Существует и другое объяснение: образование космической пыли связано с разрушением астероидов и комет. Как отмечал Э.В. Соботович, если количество космической пыли, поступающей на Землю, не меняется во времени, то правы Б.Ю. Левин и А.Н. Симоненко.

Несмотря на большое число исследований, ответ на этот принципиальный вопрос в настоящее время не может быть дан, ибо количественных оценок очень мало, а их точность дискусcионна. В последнее время данные изотопных исследований по программе NASA частиц космической пыли, отобранных в стратосфере, позволяют предполагать существование частиц досолнечного происхождения. В составе этой пыли были обнаружены такие минералы, как алмаз, муассанит (карбид кремния) и корунд, которые по изотопам углерода и азота позволяют относить их образование ко времени до формирования Солнечной системы.

Важность изучения космической пыли в геологическом разрезе очевидна. В данной статье приведены первые результаты исследования космического вещества в переходном слое глин на границе мела и палеогена (65 млн. лет назад) из разреза Гамс, в Восточных Альпах (Австрия).

Общая характеристика разреза Гамс

Частицы космического происхождения получены из нескольких разрезов переходных слоев между мелом и палеогеном (в германоязычной литературе – граница К/Т), расположенных недалеко от альпийской деревни Гамс, где одноименная река в нескольких местах вскрывает эту границу.

В разрезе Гамс 1 из обнажения был вырезан монолит, в котором граница К/T выражена очень хорошо. Его высота – 46 см, ширина – 30 см в нижней части и 22 см – в верхней, толщина – 4 см. Для общего изучения разреза монолит был разделен через 2 см (снизу вверх) на слои, обозначенные буквами латинского алфавита (A, B,C…W), а в пределах каждого слоя также через 2 см проведена маркировка цифрами (1, 2, 3 и т.д.). Более детально изучался переходный слой J на границе К/T, где были выделены шесть субслоев мощностью около 3 мм.

Результаты исследований, полученные в разрезе Гамс 1, во многом повторены при изучении другого разреза – Гамс 2. В комплекс исследований входило изучение шлифов и мономинеральных фракций, их химический анализ, а также рентгено-флуоресцентный, нейтронно-активиационный и рентгено-структурный анализы, изотопный анализ гелия, углерода и кислорода, определение состава минералов на микрозонде, магнитоминералогический анализ.

Многообразие микрочастиц

Железные и никелевые микросферы из переходного слоя между мелом и палеогеном в разрезе Гамс: 1 – микросфера Fe с грубой сетчато-бугристой поверхностью (верхняя часть переходного слоя J); 2 – микросфера Fe с грубой продольно-параллельной поверхностью (нижняя часть переходного слоя J); 3 – микросфера Fe с элементами кристаллографической огранки и грубой ячеисто-сетчатой текстурой поверхности (слой M); 4 – микросфера Fe с тонкой сетчатой поверхностью (верхняя часть переходного слоя J); 5 – микросфера Ni с кристаллитами на поверхности (верхняя часть переходного слоя J); 6 – агрегат спекшихся микросфер Ni с кристаллитами на поверхности (верхняя часть переходного слоя J); 7 – агрегат микросфер Ni с микроалмазами (С; верхняя часть переходного слоя J); 8, 9 – характерные формы металлических частиц из переходного слоя между мелом и палеогеном в разрезе Гамс в Восточных Альпах.


В переходном слое глины между двумя геологическими границами – мелом и палеогеном, а также на двух уровнях в вышележащих отложениях палеоцена в разрезе Гамс найдено множество металлических частиц и микросфер космического происхождения. Они значительно разнообразнее по форме, текстуре поверхности и химическому составу, чем все известные до сих пор в переходных слоях глины этого возраста в других регионах мира.

В разрезе Гамс космическое вещество представлено мелкодисперсными частицами различной формы, среди которых наиболее распространенными являются магнитные микросферы размером от 0.7 до 100 мкм, состоящие на 98% из чистого железа. Такие частицы в виде шариков или микросферул в большом количестве встречены не только в слое J, но и выше, в глинах палеоцена (слои K и М).

Микросферы состоят из чистого железа или магнетита, некоторые из них имеют примеси хрома (Cr), сплава железа и никеля (аваруита), а также из чистого никеля (Ni). Некоторые частицы Fe-Ni содержат примесь молибдена (Mo). В переходном слое глины между мелом и палеогеном все они обнаружены впервые.

Никогда прежде не попадались и частицы с высоким содержанием никеля и значительной примесью молибдена, микросферы с наличием хрома и куски спиралевидного железа. Кроме металлических микросфер и частиц в переходном слое глины в Гамсе обнаружены Ni-шпинель, микроалмазы с микросферами чистого Ni, а также рваные пластины Au, Cu, которые не встречены в ниже- и вышележащих отложениях.

Характеристика микрочастиц

Металлические микросферы в разрезе Гамс присутствуют на трех стратиграфических уровнях: в переходном слое глины сосредоточены разнообразные по форме железистые частицы, в вышележащих мелкозернистых песчаниках слоя K, а третий уровень образуют алевролиты слоя M.

Некоторые сферы имеют гладкую поверхность, другие - сетчато-бугристую поверхность, третьи покрыты сеткой мелких полигональных или системой параллельных трещин, отходящих от одной магистральной трещины. Они бывают полыми, скорлуповидными, заполненными глинистым минералом, могут иметь и внутреннее концентрическое строение. Металлические частицы и микросферы Fe встречаются по всему переходному слою глины, но в основном сосредоточены на нижних и средних горизонтах.

Микрометеориты представляют собой оплавленные частицы чистого железа или железо-никелевого сплава Fe-Ni (аваруит); их размеры – от 5 до 20 мкм. Многочисленные частицы аваруита приурочены к верхнему уровню переходного слоя J, тогда как чисто железистые присутствуют в нижней и верхней частях переходного слоя.

Частицы в виде пластин с поперечно-бугристой поверхностью состоят только из железа, их ширина – 10–20 мкм, длина – до 150 мкм. Они слегка дугообразно изогнуты и встречаются в основании переходного слоя J. В его нижней части также встречены пластины Fe-Ni с примесью Mo.

Пластины из сплава железа и никеля имеют удлиненную форму, слегка изогнуты, с продольными бороздками на поверхности, размеры колеблются в длину от 70 до 150 мкм при ширине около 20 мкм. Чаще они встречаются в нижней и средней частях переходного слоя.

Железистые пластины с продольными бороздками по форме и размерам идентичны пластинам сплава Ni-Fe. Они приурочены к нижней и средней частям переходного слоя.

Особый интерес представляют частицы чистого железа, имеющие форму правильной спирали и изогнутые в виде крючка. В основном они состоят из чистого Fe, редко это сплав Fe-Ni-Mo. Частицы спиралевидного железа встречаются в верхней части переходного слоя J и в вышележащем прослое песчаника (слой K). Спиралевидная частица Fe-Ni-Mo найдена в основании переходного слоя J.

В верхней части переходного слоя J присутствовало несколько зерен микроалмазов, спекшихся с Ni-микросферами. Микрозондовые исследования никелевых шариков, проведенные на двух приборах (с волновыми и энергодисперсионными спектрометрами), показали, что эти шарики состоят из практически чистого никеля под тонкой пленкой окиси никеля. Поверхность всех никелевых шариков усеяна четкими кристаллитами с выраженными двойниками размером 1–2 мкм. Столь чистый никель в виде шариков с хорошо раскристаллизованной поверхностью не встречается ни в магматических породах, ни в метеоритах, где никель обязательно содержит значимое количество примесей.

При изучении монолита из разреза Гамс 1 шарики чистого Ni встречены только в самой верхней части переходного слоя J (в самой верхней его части – очень тонком осадочном слое J 6, толщина которого не превышает 200 мкм), а по данным термагнитного анализа металлический никель присутствует в переходном слое, начиная с субслоя J4. Здесь наряду с шариками Ni обнаружены и алмазы. В слое, снятом с кубика площадью 1 см2, количество найденных зерен алмаза исчисляется десятками (с размером от долей микронов до десятков микронов), а никелевых шариков таких же размеров – сотнями.

В образцах верхней части переходного слоя, взятых непосредственно из обнажения, были обнаружены алмазы с мелкими частицами никеля на поверхности зерна. Существенно, что при изучении образцов из этой части слоя J, выявлено также присутствие и минерала муассанита. Ранее микроалмазы были найдены в переходном слое на границе мела и палеогена в Мексике.

Находки в других районах

Микросферы Гамса с концентрическим внутренним строением аналогичны тем, что были добыты экспедицией «Челленджер» в глубоководных глинах Тихого океана.

Частицы железа неправильной формы с оплавленными краями, а также в виде спиралей и изогнутых крючков и пластин обладают большим сходством с продуктами разрушения падающих на Землю метеоритов, их можно рассматривать как метеоритное железо. К этой же категории могут быть отнесены частицы аваруита и чистого никеля.

Изогнутые железные частицы близки разнообразным формам слез Пеле – капель лавы (лапиллей), которые выбрасывают в жидком состоянии вулканы из жерла при извержениях.

Таким образом, переходный слой глины в Гамсе имеет гетерогенное строение и отчетливо подразделяется на две части. В нижней и средней частях преобладают частицы и микросферы железа, тогда как верхняя часть слоя обогащена никелем: частицами аваруита и микросферами никеля с алмазами. Это подтверждается не только распределением частиц железа и никеля в глине, но также данными химического и термомагнитного анализов.

Сравнение данных термомагнитного анализа и микрозондового анализа свидетельствует о чрезвычайной неоднородности в распределении никеля, железа и их сплава в пределах слоя J, однако по результатам термомагнитного анализа чистый никель фиксируется только, со слоя J4. Обращает на себя внимание и то, что спиралевидное железо встречается преимущественно в верхней части слоя J и продолжает встречаться в перекрывающем его слое K, где, однако, мало частиц Fe, Fe-Ni изометричной или пластинчатой формы.

Подчеркнем, что столь явная дифференциация по железу, никелю, иридию, проявленная в переходном слое глины в Гамсе, имеется и в других районах. Так, в американском штате Нью-Джерси в переходном (6 см) сферуловом слое иридиевая аномалия резко проявилась в его основании, а ударные минералы сосредоточены только в верхней (1 см) части этого слоя. На Гаити на границе мела и палеогена и в самой верхней части сферулового слоя отмечается резкое обогащение Ni и ударным кварцем.

Фоновое явление для Земли

Многие особенности найденных сферул Fe и Fe-Ni аналогичны шарикам, обнаруженным экспедицией «Челленджер» в глубоководных глинах Тихого океана, в районе Тунгусской катастрофы и местах падения Сихотэ-Алиньского метеорита и метеорита Нио в Японии, а также в осадочных горных породах разного возраста из многих районов мира. Кроме районов Тунгусской катастрофы и падения Сихотэ-Алиньского метеорита, во всех других случаях образование не только сферул, но и частиц различной морфологии, состоящих из чистого железа (иногда с содержанием хрома) и сплава никеля с железом, никакой связи с импактным событием не имеет. Мы рассматриваем появление таких частиц как результат падения на поверхность Земли космической межпланетной пыли – процесса, который непрерывно продолжается с момента образования Земли и представляет собой своего рода фоновое явление.

Многие частицы, изученные в разрезе Гамс близки по составу к валовому химическому составу метеоритного вещества в месте падения Сихотэ-Алиньского метеорита (по данным Е.Л. Кринова, это 93.29% железа, 5.94% никеля, 0.38% кобальта).

Присутствие молибдена в некоторых частицах не является неожиданным, поскольку его включают метеориты многих типов. Содержание молибдена в метеоритах (железных, каменных и углистых хондритах) находится в пределах от 6 до 7 г/т. Самым важным стала находка молибденита в метеорите Алленде в виде включения в сплаве металла следующего состава (вес.%): Fe – 31.1, Ni – 64.5, Co – 2.0, Cr – 0.3, V – 0.5, P – 0.1. Следует отметить, что самородный молибден и молибденит были обнаружены и в лунной пыли, отобранной автоматическими станциями «Луна-16», «Луна-20» и «Луна-24».

Впервые найденные шарики чистого никеля с хорошо раскристаллизованной поверхностью не известны ни в магматических породах, ни в метеоритах, где никель обязательно содержит значимое количество примесей. Такая структура поверхности никелевых шариков могла возникнуть в случае падения астероида (метеорита), которое привело к выделению энергии, позволившей не только расплавить материал упавшего тела, но и испарить его. Пары металла могли быть подняты взрывом на большую высоту (вероятно, на десятки километров), где и происходила кристаллизация.

Частицы, состоящие из аваруита (Ni3Fe), найдены вместе с металлическими шариками никеля. Они относятся к метеорной пыли, а оплавленные частицы железа (микрометеориты) следует рассматривать как «метеоритную пыль» (по терминологии Е.Л. Кринова). Кристаллы алмаза, встреченные вместе с шариками никеля, вероятно, возникли в результате абляции (плавления и испарения) метеорита из того же облака пара при его последующем охлаждении. Известно, что синтетические алмазы получают методом спонтанной кристаллизации из раствора углерода в расплаве металлов (Ni, Fe) выше линии фазового равновесия графит–алмаз в форме монокристаллов, их сростков, двойников, поликристаллических агрегатов, каркасных кристаллов, кристаллов игольчатой формы, неправильных зерен. Практически все из перечисленных типоморфных особенностей кристаллов алмаза были обнаружены в изученном образце.

Это позволяет сделать вывод о схожести процессов кристаллизации алмаза в облаке никель-углеродного пара при его охлаждении и спонтанной кристаллизации из раствора углерода в расплаве никеля в экспериментах. Однако окончательный вывод о природе алмаза можно будет сделать после детальных изотопных исследований, для чего необходимо получить достаточно большое количество вещества.

Таким образом, изучение космического вещества в переходном глинистом слое на границе мела и палеогена показало его присутствие во всех частях (от слоя J1 до слоя J6), но признаки импактного события фиксируются только со слоя J4, возраст которого 65 млн. лет. Этот слой космической пыли можно сопоставить со временем гибели динозавров.

А.Ф.ГРАЧЁВ доктор геолого-минералогических наук, В.A.ЦЕЛЬМОВИЧ кандидат физико-математических наук, Институт физики Земли РАН (ИФЗ РАН), О.А.КОРЧАГИН кандидат геолого-минералогических наук, Геологический институт РАН (ГИН РАН).

Журнал "Земля и Вселенная" № 5 2008 год.

Понравилась статья? Поделиться с друзьями: